
1
Mastering Tasking with OpenMP

Mastering Tasking with OpenMP

Members of the OpenMP Language Committee

Christian Terboven

Michael Klemm

Xavier Teruel

Bronis R. de Supinski

2
Mastering Tasking with OpenMP

◼OpenMP Overview ~30 min.

→Welcome, Basics, Memory Model

◼OpenMP Tasking Model ~60 min.

→Tasking, Data Sharing, Taskloop

◼ Improving Tasking Performance ~60 min.

→Dependences, Cut-Off, Affinity

◼ Advanced Tasking Functionality ~30 min.

→Events, Detached Tasks, Free agent threads, Cancellation

◼ Future OpenMP Directions ~20 min.

Agenda

3
Mastering Tasking with OpenMP

Material and Evaluation

Updated slides: https://bit.ly/isc25-omp-tsk

Please participate in the tutorial‘s evaluation (link will be provided later)!

1
Mastering Tasking with OpenMP – OpenMP Overview

Christian Terboven

OpenMP Overview

2
Mastering Tasking with OpenMP – OpenMP Overview

Christian Terboven

What is OpenMP?

Parallel
Regions

Work-
sharing

Tasking

Memory
Manage-

ment

Devices

Vector-
ization

◼ De-facto standard Application Programming Interface (API) to write

shared memory parallel

applications in C,

C++, and Fortran

◼ Consists of Compiler Directives,

Runtime routines

and Environment

variables

◼ Version 5.0 has been released

at SC18

◼ Version 5.2 has been released

at SC21

◼ Version 6.0 has been released

at SC24

3
Mastering Tasking with OpenMP – OpenMP Overview

Christian Terboven

The OpenMP Execution Model

Fork and Join Model
Initial

Thread

Worker

Threads
Parallel

region

Synchronization

Parallel

region

Worker

Threads

Synchronization

#pragma omp parallel
{

....
}

#pragma omp parallel
{

....
}

4
Mastering Tasking with OpenMP – OpenMP Overview

Christian Terboven

◼ The work is distributed over the threads

◼ Must be enclosed in a parallel region

◼ Must be encountered by all threads in

the team, or none at all

◼ No implied barrier on entry

◼ Implied barrier on exit (unless the nowait

clause is specified)

◼ A work-sharing construct does not launch

any new threads

The Worksharing Constructs

#pragma omp for
{

....
}

#pragma omp sections
{

....
}

#pragma omp single
{

....
}

5
Mastering Tasking with OpenMP – OpenMP Overview

Christian Terboven

◼ Single: only one thread in the team executes the code enclosed

◼Masked: rule-based selection of threads for region execution

Single, Masked and Master / 1

#pragma omp single [private][firstprivate] \
[copyprivate][nowait]

{
<code-block>

}

#pragma omp masked [filter(integer-expression)]
{<code-block>}

There is no implied

barrier on entry, but

there is one on exit !

6
Mastering Tasking with OpenMP – OpenMP Overview

Christian Terboven

◼ Single: only one thread in the team executes the code enclosed

◼Masked: rule-based selection of threads for region execution

→Replacement of Master:

Single, Masked and Master / 2

#pragma omp single [private][firstprivate] \
[copyprivate][nowait]

{
<code-block>

}

#pragma omp masked [filter(integer-expression)]
{<code-block>}

#pragma omp masked [filter(0)]
{<code-block>}

7
Mastering Tasking with OpenMP – OpenMP Overview

Christian Terboven

The OpenMP Memory Model
◆ All threads have access

to the same, globally
shared memory

◆ Data in private memory
is only accessible by the
thread owning this
memory

◆ No other thread sees
the change(s) in private
memory

◆ Data transfer is through
shared memory and is
100% transparent to the
application

T

private
memory

T

private
memory

T T
private

memory

private
memory

T

private
memory

Shared
Memory

9
Mastering Tasking with OpenMP – OpenMP Overview

Christian Terboven
9

Tasking Motivation

10
Mastering Tasking with OpenMP – OpenMP Overview

Christian Terboven

◼ Lets solve Sudoku puzzles with brute multi-core force

Sudoko for Lazy Computer Scientists

◼ (1) Search an empty field

◼ (2) Try all numbers:

◼ (2 a) Check Sudoku

◼ If invalid: skip

◼ If valid: Go to next field

◼ Wait for completion

11
Mastering Tasking with OpenMP – OpenMP Overview

Christian Terboven

◼ This parallel algorithm finds all valid solutions

Parallel Brute-force Sudoku

◼ (1) Search an empty field

◼ (2) Try all numbers:

◼ (2 a) Check Sudoku

◼ If invalid: skip

◼ If valid: Go to next field

◼ Wait for completion

first call contained in a
#pragma omp parallel

#pragma omp single

such that one tasks starts the
execution of the algorithm

#pragma omp task

needs to work on a new copy
of the Sudoku board

#pragma omp taskwait

wait for all child tasks

12
Mastering Tasking with OpenMP – OpenMP Overview

Christian Terboven

Performance Evaluation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 16 24 32

Sp
ee

d
u

p

R
u

n
ti

m
e

[s
ec

]
fo

r
1

6
x1

6

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding

Is this the best
we can can do?

1
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

Tasking Overview

2
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

◼ Tasks are work units whose execution

→ may be deferred or…

→ … can be executed immediately

◼ Tasks are composed of

→ code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

◼ Tasks are created…

… when reaching a parallel region → implicit tasks are created (per thread)

… when encountering a task construct → explicit task is created

… when encountering a taskloop construct → explicit tasks per chunk are created

… when encountering a target construct → target task is created

What is a task in OpenMP?

3
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

◼ Supports unstructured parallelism

→ unbounded loops

→ recursive functions

◼ Several scenarios are possible:

→ single creator, multiple creators, nested tasks (tasks & WS)

◼ All threads in the team are candidates to execute tasks

Tasking execution model

while (<expr>) {

...

}

void myfunc(<args>)

{

...; myfunc(<newargs>); ...;

}

Task pool

Parallel Team

#pragma omp parallel

#pragma omp single

while (elem != NULL) {

#pragma omp task

compute(elem);

elem = elem->next;

}

◼ Example (unstructured parallelism)

4
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

!$omp task [clause[[,] clause]...]

…structured-block…

!$omp end task

Synchronization

Cutoff Strategies

Data Environment

◼ Deferring (or not) a unit of work (executable for any member of the team)

◼ Where clause is one of:

The task construct

→ if(scalar-expression)

→ mergeable

→ final(scalar-expression)

→ depend(dep-type: list)

→ untied

→ priority(priority-value)

→ affinity(list)

→ private(list)

→ firstprivate(list)

→ shared(list)

→ default(shared | none)

→ in_reduction(r-id: list)

→ allocate([allocator:] list)

→ detach(event-handler)

#pragma omp task [clause[[,] clause]...]

{structured-block}

Task Scheduling
Miscellaneous

5
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

◼ Tasks are tied by default (when no untied clause present)

→ tied tasks are executed always by the same thread (not necessarily creator)

→ tied tasks may run into performance problems

◼ Programmers may specify tasks to be untied (relax scheduling)

→ can potentially switch to any thread (of the team)

→ bad mix with thread based features: thread-id, threadprivate, critical regions...

→ gives the runtime more flexibility to schedule tasks

→ but most of OpenMP implementations doesn’t “honor” untied 

Task scheduling: tied vs untied tasks

#pragma omp task untied

{structured-block}

6
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

◼ Task scheduling points (and the taskyield directive)

→ tasks can be suspended/resumed at TSPs → some additional constraints to avoid deadlock problems

→ implicit scheduling points (creation, synchronization, ...)

→ explicit scheduling point: the taskyield directive

◼ Scheduling [tied/untied] tasks: example

Task scheduling: taskyield directive

#pragma omp taskyield

#pragma omp parallel

#pragma omp single

{

#pragma omp task

{

foo();

#pragma omp taskyield

bar()

}

}

single

foo()

bar()

untied:

single

foo() bar()tied:

untied

(default)

7
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

◼ Programmers may specify a priority value when creating a task

→ pvalue: the higher → the best (will be scheduled earlier)

→ once a thread becomes idle, gets one of the highest priority tasks

Task scheduling: programmer’s hints

#pragma omp parallel

#pragma omp single

{

for (i = 0; i < SIZE; i++) {

#pragma omp task priority(1)

{ code_A; }

}

#pragma omp task priority(100)

{ code_B; }

...

}

#pragma omp task priority(pvalue)

{structured-block}

Task pool
priority-aware

Parallel Team

8
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

◼ The taskwait directive (shallow task synchronization)

→ It is a stand-alone directive

→ wait on the completion of child tasks of the current task; just direct children, not all descendant tasks;

includes an implicit task scheduling point (TSP)

Task synchronization: taskwait directive

#pragma omp taskwait

#pragma omp parallel

#pragma omp single

{

#pragma omp task

{

#pragma omp task

{ … }

#pragma omp task

{ … …}

#pragma omp taskwait

}

} // implicit barrier will wait for C.x

C.1 C.2

wait for…

A

: A

{ … #C.1; #C.2; …}

B C
: B

: C

9
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

◼ OpenMP barrier (implicit or explicit)

→ All tasks created by any thread of the current team are guaranteed to be completed at barrier exit

→ And all other implicit barriers at parallel, sections, for, single, etc…

Task synchronization: barrier semantics

#pragma omp barrier

10
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

◼ The taskgroup construct (deep task synchronization)

→ attached to a structured block; completion of all descendants of the current task; TSP at the end

→ where clause (could only be): reduction(reduction-identifier: list-items)

Task synchronization: taskgroup construct

#pragma omp taskgroup [clause[[,] clause]...]

{structured-block}

#pragma omp parallel

#pragma omp single

{

#pragma omp taskgroup

{

#pragma omp task

{ … }

#pragma omp task

{ … #C.1; #C.2; …}

} // end of taskgroup

}

wait for…

B C

C.1 C.2

A

:B

:C

: A

11
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

Data Environment

12
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

◼ Explicit data-sharing clauses (shared, private and firstprivate)

◼ If default clause present, what the clause says

→ shared: data which is not explicitly included in any other data sharing clause will be shared

→ none: compiler will issue an error if the attribute is not explicitly set by the programmer (very useful!!!)

Explicit data-sharing clauses

#pragma omp task shared(a)

{

// Scope of a: shared

}

#pragma omp task private(b)

{

// Scope of b: private

}

#pragma omp task firstprivate(c)

{

// Scope of c: firstprivate

}

#pragma omp task default(shared)

{

// Scope of all the references, not explicitly

// included in any other data sharing clause,

// and with no pre-determined attribute: shared

}

#pragma omp task default(none)

{

// Compiler will force to specify the scope for

// every single variable referenced in the context

}

Hint: Use default(none) to be forced to think about every
variable if you do not see clearly.

13
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

◼ threadprivate variables are threadprivate (1)

◼ dynamic storage duration objects are shared (malloc, new,…) (2)

◼ static data members are shared (3)

◼ variables declared inside the construct

→static storage duration variables are shared (4)

→automatic storage duration variables are private (5)

◼ the loop iteration variable(s)…

Pre-determined data-sharing attributes

void foo(void){

static int s = MN;

}

#pragma omp task

{

foo(); // s@foo(): shared

}

int A[SIZE];

#pragma omp threadprivate(A)

// ...

#pragma omp task

{

// A: threadprivate

}

int *p;

p = malloc(sizeof(float)*SIZE);

#pragma omp task

{

// *p: shared

}

#pragma omp task

{

int x = MN;

// Scope of x: private

}

#pragma omp task

{

static int y;

// Scope of y: shared

}

1 2 3

4

5

14
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

Implicit data-sharing attributes (in-practice)

int a = 1;

void foo() {

int b = 2, c = 3;

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

}

}

}

◼ (in-practice) variable values within the task:

→ value of a: 1

→ value of b: x // undefined (undefined in parallel)

→ value of c: 3

→ value of d: 4

→ value of e: 5

◼ Implicit data-sharing rules for the task region

→ the shared attribute is lexically inherited

→ in any other case the variable is firstprivate

→ Pre-determined rules (can not change)

→ Explicit data-sharing clauses (+ default)

→ Implicit data-sharing rules

15
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

Task reductions (using taskgroup)
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{

#pragma omp single
{

#pragma omp taskgroup task_reduction(+: res)
{ // [1]

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{ // [2]

res += node->value;
}
node = node->next;

}
} // [3]

}
}

◼ Reduction operation

→ perform some forms of recurrence calculations

→ associative and commutative operators

◼ The (taskgroup) scoping reduction clause

→ Register a new reduction at [1]

→ Computes the final result after [3]

◼ The (task) in_reduction clause [participating]

→ Task participates in a reduction operation [2]

#pragma omp task in_reduction(op: list)

{structured-block}

#pragma omp taskgroup task_reduction(op: list)

{structured-block}

16
Mastering Tasking with OpenMP – Tasking Overview

Christian Terboven

Task reductions (+ modifiers)
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel reduction(task,+: res)
{ // [1][2]

#pragma omp single
{

#pragma omp taskgroup
{

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{ // [3]

res += node->value;
}
node = node->next;

}
}

}
} // [4]

◼ Reduction modifiers

→ Former reductions clauses have been extended

→ task modifier allows to express task reductions

→ Registering a new task reduction [1]

→ Implicit tasks participate in the reduction [2]

→ Compute final result after [4]

◼ The (task) in_reduction clause [participating]

→ Task participates in a reduction operation [3]

#pragma omp task in_reduction(op: list)

{structured-block}

1
Mastering Tasking with OpenMP – Tasking Overview

Michael Klemm

Tasking Use Cases

2
Mastering Tasking with OpenMP – Tasking Overview

Michael Klemm

Tasking Use Case: Fibonacci (Recursion)
int comp_fib_numbers (int n) {

int fn1, fn2;

if (n == 0 || n == 1) return(n);

#pragma omp task shared(fn1)

fn1 = comp_fib_numbers(n-1);

#pragma omp task shared(fn2)

fn2 = comp_fib_numbers(n-2);

#pragma omp taskwait

return(fn1 + fn2);

}

◼ Functionally correct

◼ Poor performance

→ Tasks are very fine-grained

→ Too much parallelism?

◼ Improving programmability

→ Cut-off strategies

3
Mastering Tasking with OpenMP – Tasking Overview

Michael Klemm

Tasking Use Case: Cholesky (Synchronization)
void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task

trsm(a[k][k], a[k][i], ts, ts);

}

#pragma omp taskwait

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task

syrk(a[k][i], a[i][i], ts, ts);

}

#pragma omp taskwait

}

}

◼ Complex synchronization patterns

→ Splitting computational phases

→ taskwait or taskgroup

→ Needs complex code analysis

◼ Improving programmability

→ OpenMP dependences

→ It also improves composability

4
Mastering Tasking with OpenMP – Tasking Overview

Michael Klemm

Tasking Use Case: saxpy (Blocking/Tiling)

#pragma omp parallel

#pragma omp single

for (i = 0; i<SIZE; i+=TS) {

UB = SIZE < (i+TS)?SIZE:i+TS;

#pragma omp task private(ii) \

firstprivate(i,UB) shared(S,A,B)

for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;

}

}

◼ Difficult to determine grain

→ 1 single iteration → to fine

→ whole loop → no parallelism

◼ Manually transform the code

→ blocking techniques

◼ Improving programmability

→ OpenMP taskloop

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

for (i = 0; i<SIZE; i+=TS) {

UB = SIZE < (i+TS)?SIZE:i+TS;

for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;

}

}

5
Mastering Tasking with OpenMP – Tasking Overview

Michael Klemm

The taskloop Construct

6
Mastering Tasking with OpenMP – Tasking Overview

Michael Klemm

Tasking Use Case: saxpy (taskloop)

#pragma omp parallel

#pragma omp single

for (i = 0; i<SIZE; i+=TS) {

UB = SIZE < (i+TS)?SIZE:i+TS;

#pragma omp task private(ii) \

firstprivate(i,UB) shared(S,A,B)

for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;

}

}

◼ Difficult to determine grain

→ 1 single iteration → to fine

→ whole loop → no parallelism

◼ Manually transform the code

→ blocking techniques

◼ Improving programmability

→ OpenMP taskloop

→ Hiding the internal details

→ Grain size ~ Tile size (TS) → but implementation

decides exact grain size

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

for (i = 0; i<SIZE; i+=TS) {

UB = SIZE < (i+TS)?SIZE:i+TS;

for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;

}

}

#pragma omp taskloop grainsize(TS)

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

7
Mastering Tasking with OpenMP – Tasking Overview

Michael Klemm

◼ Task generating construct: decompose a loop into chunks, create a task for each loop chunk

◼ Where clause is one of:

!$omp taskloop [clause[[,] clause]…]

…structured-do-loops…

!$omp end taskloop

Scheduler (R/H)

Cutoff Strategies

Data Environment

The taskloop Construct

→ if(scalar-expression)

→ final(scalar-expression)

→ mergeable

→ untied

→ priority(priority-value)

→ collapse(n)

→ nogroup

→ allocate([allocator:] list)

→ shared(list)

→ private(list)

→ firstprivate(list)

→ lastprivate(list)

→ default(sh | pr | fp | none)

→ reduction(r-id: list)

→ in_reduction(r-id: list)

→ grainsize(grain-size)

→ num_tasks(num-tasks)

#pragma omp taskloop [clause[[,] clause]…]

{structured-for-loops}

Chunks/Grain

Miscellaneous

8
Mastering Tasking with OpenMP – Tasking Overview

Michael Klemm

◼ Clause: grainsize(grain-size)

→ Chunks have at least grain-size iterations

→ Chunks have maximum 2x grain-size iterations

Taskloop decomposition approaches

int TS = 4 * 1024;

#pragma omp taskloop grainsize(TS)

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

◼ Clause: num_tasks(num-tasks)

→ Create num-tasks chunks

→ Each chunk must have at least one iteration

int NT = 4 * omp_get_num_threads();

#pragma omp taskloop num_tasks(NT)

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

◼ If none of previous clauses is present, the number of chunks and the number of iterations per chunk

is implementation defined

◼ Additional considerations:

→ The order of the creation of the loop tasks is unspecified

→ Taskloop creates an implicit taskgroup region; nogroup → no implicit taskgroup region is created

9
Mastering Tasking with OpenMP – Tasking Overview

Michael Klemm

◼ The collapse clause in the taskloop construct

→ Number of loops associated with the taskloop construct (n)

→ Loops are collapsed into one larger iteration space

→ Then divided according to the grainsize and num_tasks

◼ Intervening code between any two associated loops

→ at least once per iteration of the enclosing loop

→ at most once per iteration of the innermost loop

Collapsing iteration spaces with taskloop

#pragma omp taskloop collapse(n)

{structured-for-loops}

#pragma omp taskloop collapse(2)

for (i = 0; i<SX; i+=1) {

for (j= 0; i<SY; j+=1) {

for (k = 0; i<SZ; k+=1) {

A[f(i,j,k)]=<expression>;

}

}

}

#pragma omp taskloop

for (ij = 0; i<SX*SY; ij+=1) {

for (k = 0; i<SZ; k+=1) {

i = index_for_i(ij);

j = index_for_j(ij);

A[f(i,j,k)]=<expression>;

}

}

10
Mastering Tasking with OpenMP – Tasking Overview

Michael Klemm

◼ Clause: reduction(r-id: list)

→ It defines the scope of a new reduction

→ All created tasks participate in the reduction

→ It cannot be used with the nogroup clause

◼ Clause: in_reduction(r-id: list)

→ Reuse an already defined reduction scope

→ All created tasks participate in the reduction

→ It can be used with the nogroup* clause, but it

is user responsibility to guarantee result

Task reductions (using taskloop)

double dotprod(int n, double *x, double *y) {

double r = 0.0;

#pragma omp taskloop reduction(+: r)

for (i = 0; i < n; i++)

r += x[i] * y[i];

return r;

}

double dotprod(int n, double *x, double *y) {

double r = 0.0;

#pragma omp taskgroup task_reduction(+: r)

{

#pragma omp taskloop in_reduction(+: r)*

for (i = 0; i < n; i++)

r += x[i] * y[i];

}

return r;

}

11
Mastering Tasking with OpenMP – Tasking Overview

Michael Klemm

◼ Task generating construct: decompose a loop into chunks, create a task for each loop chunk

◼ Each generated task will apply (internally) SIMD to each loop chunk

→ C/C++ syntax:

→ Fortran syntax:

◼ Where clause is any of the clauses accepted by taskloop or simd directives

Composite construct: taskloop simd

!$omp taskloop simd [clause[[,] clause]…]

…structured-do-loops…

!$omp end taskloop

#pragma omp taskloop simd [clause[[,] clause]…]

{structured-for-loops}

12
Mastering Tasking with OpenMP – Tasking Overview

Michael Klemm

Worksharing vs. taskloop constructs (1/2)
subroutine worksharing

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp do

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end do

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

subroutine taskloop

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp taskloop

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end taskloop

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

13
Mastering Tasking with OpenMP – Tasking Overview

Michael Klemm

Worksharing vs. taskloop constructs (2/2)
subroutine worksharing

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp do

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end do

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

subroutine taskloop

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp single

!$omp taskloop

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end taskloop

!$omp end single

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

1
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

Improving Tasking Performance:

Cutoff clauses and strategies

2
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

Example: Sudoku revisited

3
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

◼ This parallel algorithm finds all valid solutions

Parallel Brute-force Sudoku

◼ (1) Search an empty field

◼ (2) Try all numbers:

◼ (2 a) Check Sudoku

◼ If invalid: skip

◼ If valid: Go to next

field

◼ Wait for completion

first call contained in a
#pragma omp parallel

#pragma omp single

such that one tasks starts the
execution of the algorithm

#pragma omp task

needs to work on a new copy
of the Sudoku board

#pragma omp taskwait

wait for all child tasks

4
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

Performance Evaluation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sp
ee

d
u

p

R
u

n
ti

m
e

[s
ec

]
fo

r
1

6
x1

6

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding

5
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

Performance Analysis

Duration: 0.16 sec

Duration: 0.047 sec

Event-based profiling provides a
good overview :

Every thread is executing ~1.3m tasks…

… in ~5.7 seconds.
=> average duration of a task is ~4.4 μs

Tracing provides more details:

Duration: 0.001 sec

Duration: 2.2 μs

Tasks get much smaller
down the call-stack.

lvl 6

lvl 12

lvl 48

lvl 82

6
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

Performance Analysis

Duration: 0.16 sec

Duration: 0.047 sec

Event-based profiling provides a
good overview :

Every thread is executing ~1.3m tasks…

… in ~5.7 seconds.
=> average duration of a task is ~4.4 μs

Tracing provides more details:

Duration: 0.001 sec

Duration: 2.2 μs

Tasks get much smaller
down the call-stack.

lvl 6

lvl 12

lvl 48

lvl 82

If you have enough parallelism, stop creating more tasks!!
• if-clause, final-clause, mergeable-clause
• natively in your program code

7
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

Performance Evaluation (with cutoff)

0

2

4

6

8

10

12

14

16

18

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sp
ee

d
u

p

R
u

n
ti

m
e

[s
ec

]
fo

r
1

6
x1

6

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding Intel C++ 13.1, scatter binding, cutoff

speedup: Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding, cutoff

8
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

◼ Rule of thumb: the if(expression)clause as a “switch off” mechanism

→ Allows lightweight implementations of task creation and execution but it reduces the parallelism

◼ If the expression of the if clause evaluates to false

→ the encountering task is suspended

→ the new task is executed immediately (task

dependences are respected!!)

→ the encountering task resumes its execution

once the new task is completed

→ This is known as undeferred task

◼ Even if the expression is false, data-sharing clauses are honored

The if clause

int foo(int x) {

printf(“entering foo function\n”);

int res = 0;

#pragma omp task shared(res) if(false)

{

res += x;

}

printf(“leaving foo function\n”);

}

Really useful to debug tasking applications!

9
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

◼ The final(expression) clause

→ Nested tasks / recursive applications

→ allows to avoid future task creation → reduces overhead but also reduces parallelism

◼ If the expression of the final clause evaluates to true

→ The new task is created and executed normally but in its context all tasks will be executed immediately

by the same thread (included tasks)

◼ Data-sharing clauses are honored too!

The final clause

A

B C

C.1 C.2

e == false e == true A

…
Code_B;
Code_C;

code_c1;
code_c2;

...

#pragma omp task final(e)

{

#pragma omp task

{ … }

#pragma omp task

{ … #C.1; #C.2 … }

#pragma omp taskwait

}

10
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

◼ The mergeable clause

→ Optimization: get rid of “data-sharing clauses are honored”

→ This optimization can only be applied in undeferred or included tasks

◼ A Task that is annotated with the mergeable clause is called a mergeable task

→ A task that may be a merged task if it is an undeferred task or an included task

◼ A merged task is:

→ A task for which the data environment (inclusive of ICVs) may be the same as that of

its generating task region

◼ A good implementation could execute a merged task without adding any OpenMP-

related overhead

The mergeable clause

Unfortunately, there are no OpenMP

commercial implementations taking
advantatge of final neither mergeable =(

11
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

Example: Fibonacci

12
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

Fibonacci: without cutoff
int fib(int n) {

if (n < 2)

return n;

int res1, res2;

#pragma omp task shared(res1)

res1 = fib(n-1);

#pragma omp task shared(res2)

res2 = fib(n-2);

#pragma omp taskwait

return res1 + res2;

}

icc 2018.0

gcc 7.2.0

13
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

Fibonacci: if clause
int fib(int n) {

if (n < 2)

return n;

int res1, res2;

#pragma omp task shared(res1) if(n > 30)

res1 = fib(n-1);

#pragma omp task shared(res2) if(n > 30)

res2 = fib(n-2);

#pragma omp taskwait

return res1 + res2;

}

icc 2018.0

gcc 7.2.0

14
Mastering Tasking with OpenMP – Cutoff

Christian Terboven

Fibonacci: manual optimization
int fib(int n) {

if (n < 30)

return fib_serial(n);

int res1, res2;

#pragma omp task shared(res1)

res1 = fib(n-1);

#pragma omp task shared(res2)

res2 = fib(n-2);

#pragma omp taskwait

return res1 + res2;

}

icc 2018.0

gcc 7.2.0

1
Mastering Tasking with OpenMP – Task Affinity

Christian Terboven

Improving Tasking Performance:

Task Affinity (OpenMP 5.0 feature)

2
Mastering Tasking with OpenMP – Task Affinity

Christian Terboven

◼ Techniques for process binding & thread pinning available

→OpenMP thread level: OMP_PLACES & OMP_PROC_BIND

→OS functionality: taskset -c

OpenMP Tasking:

◼ In general: Tasks may be executed by any thread in the team

→Missing task-to-data affinity may have detrimental effect on performance

OpenMP 5.0:

◼ affinity clause to express affinity to data

Motivation

3
Mastering Tasking with OpenMP – Task Affinity

Christian Terboven

◼ New clause: #pragma omp task affinity (list)

→Hint to the runtime to execute task closely to physical data location

→Clear separation between dependencies and affinity

◼ Expectations:

→Improve data locality / reduce remote memory accesses

→Decrease runtime variability

◼ Still expect task stealing

→In particular, if a thread is under-utilized

affinity clause

4
Mastering Tasking with OpenMP – Task Affinity

Christian Terboven

◼ Excerpt from task-parallel STREAM

→Loops have been blocked manually (see tmp_idx_start/end)

→Assumption: initialization and computation have same blocking and same affinity

Code Example

1 #pragma omp task \
2 shared(a, b, c, scalar) \
3 firstprivate(tmp_idx_start, tmp_idx_end) \
4 affinity(a[tmp_idx_start])
5 {
6 int i;
7 for(i = tmp_idx_start; i <= tmp_idx_end; i++)
8 a[i] = b[i] + scalar * c[i];
9 }

5
Mastering Tasking with OpenMP – Task Affinity

Christian Terboven

Selected LLVM implementation details

Encounter task
region …

Task with
data

affinity?

Push to local
queue

Location
for data

reference in
map?

Identify NUMA
domain where
data is stored

Select thread
pinned to

NUMA domain

Save
{reference,

location} in map

Push task into
other threads

queue
end

Yes

No

Yes

No

A map is introduced to
store location information
of data that was previously
used

Jannis Klinkenberg, Philipp Samfass,
Christian Terboven, Alejandro Duran,
Michael Klemm, Xavier Teruel, Sergi
Mateo, Stephen L. Olivier, and Matthias
S. Müller. Assessing Task-to-Data Affinity
in the LLVM OpenMP Runtime.
Proceedings of the 14th International
Workshop on OpenMP, IWOMP 2018.
September 26-28, 2018, Barcelona,

Spain.

6
Mastering Tasking with OpenMP – Task Affinity

Christian Terboven

Evaluation (Merge-Sort, from paper above)
Program runtime
Median of 10 runs

Distribution of single
task execution times

LIKWID: reduction of remote data volume from 69% to 13%

Speedup
of 4.3 X

7
Mastering Tasking with OpenMP – Task Affinity

Christian Terboven

◼ Requirement for this feature: thread affinity enabled

◼ The affinity clause helps, if

→tasks access data heavily

→single task creator scenario, or task not created with data affinity

→high load imbalance among the tasks

◼ Different from thread binding: task stealing is absolutely allowed

Summary

1
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

Improving Tasking Performance:

Task dependences

2
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

◼ Task dependences as a way to define task-execution constraints

Motivation

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(in: x)

std::cout << x << std::endl;

#pragma omp task depend(inout: x)

x++;

}

OpenMP 4.0int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task

std::cout << x << std::endl;

#pragma omp taskwait

#pragma omp task

x++;

}

OpenMP 3.1

t1

t2

t1

t2

Task’s creation time

Task’s execution time

OpenMP 3.1

OpenMP 4.0

Task dependences can help us to remove

“strong” synchronizations, increasing the look

ahead and, frequently, the paralelism!!!!

3
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

Motivation: Cholesky factorization
void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

#pragma omp task depend(inout: a[k][k])

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task depend(in: a[k][k])

depend(inout: a[k][i])

trsm(a[k][k], a[k][i], ts, ts);

}

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task depend(inout: a[j][i])

depend(in: a[k][i], a[k][j])

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task depend(inout: a[i][i])

depend(in: a[k][i])

syrk(a[k][i], a[i][i], ts, ts);

}

}

} OpenMP 4.0

void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task

trsm(a[k][k], a[k][i], ts, ts);

}

#pragma omp taskwait

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task

syrk(a[k][i], a[i][i], ts, ts);

}

#pragma omp taskwait

}

}

OpenMP 3.1

nt

nt

ts

ts

ts

ts

4
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

Motivation: Cholesky factorization
void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

#pragma omp task depend(inout: a[k][k])

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task depend(in: a[k][k])

depend(inout: a[k][i])

trsm(a[k][k], a[k][i], ts, ts);

}

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task depend(inout: a[j][i])

depend(in: a[k][i], a[k][j])

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task depend(inout: a[i][i])

depend(in: a[k][i])

syrk(a[k][i], a[i][i], ts, ts);

}

}

} OpenMP 4.0

void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task

trsm(a[k][k], a[k][i], ts, ts);

}

#pragma omp taskwait

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task

syrk(a[k][i], a[i][i], ts, ts);

}

#pragma omp taskwait

}

}

OpenMP 3.1

nt

nt

ts

ts

ts

ts

Using 2017 Intel compiler

5
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

What’s in the spec

6
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

What’s in the spec: a bit of history

• The depend clause was added to the

target constructs

• Support to doacross loops

OpenMP 4.5

• The depend clause was added

to the task construct

OpenMP 4.0

• lvalue expressions in the depend clause

• New dependency type: mutexinoutset

• Iterators were added to the depend clause

• The depend clause was added to the taskwait

• Dependable objects

OpenMP 5.0

• New dependency type:
inoutset

OpenMP 5.1

7
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

depend([depend-modifier,] dependency-type: list-items)

where:

→ depend-modifier is used to define iterators

→ dependency-type may be: in, out, inout, inoutset, mutexinoutset and

depobj

→ A list-item may be:

• C/C++: A lvalue expr or an array section depend(in: x, v[i], *p, w[10:10])

• Fortran: A variable or an array section depend(in: x, v(i), w(10:20))

What’s in the spec: syntax depend clause

8
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

◼ A task cannot be executed until all its predecessor tasks are completed

◼ If a task defines an in dependence over a list-item

→ the task will depend on all previously generated sibling tasks that reference that list-item in an out or

inout dependence

◼ If a task defines an out/inout dependence over list-item

→ the task will depend on all previously generated sibling tasks that reference that list-item in an in, out or

inout dependence

What’s in the spec: sema depend clause (1)

9
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

◼ A task cannot be executed until all its predecessor tasks are completed

◼ If a task defines an in dependence over a list-item

→ the task will depend on all previously generated sibling tasks that reference that list-item in an out or

inout dependence

◼ If a task defines an out/inout dependence over list-item

→ the task will depend on all previously generated sibling tasks that reference that list-item in an in, out or

inout dependence

What’s in the spec: sema depend clause (1)

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{ ... }

#pragma omp task depend(in: x) //T2

{ ... }

#pragma omp task depend(in: x) //T3

{ ... }

#pragma omp task depend(inout: x) //T4

{ ... }

}

T1

T2 T3

T4

10
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

◼ Set types: inoutset & mutexinoutset

What’s in the spec: sema depend clause (2)

int x = 0, y = 0, res = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(out: res) //T0

res = 0;

#pragma omp task depend(out: x) //T1

long_computation(x);

#pragma omp task depend(out: y) //T2

short_computation(y);

#pragma omp task depend(in: x)

res += x;

#pragma omp task depend(in: y)

res += y;

#pragma omp task depend(in: res) //T5

std::cout << res << std::endl;

}

T3

T4

T5

T1 T2T0

depend(mutexinoutset: res) //T3depend(inout: res) //T3

depend(inout: res) //T4depend(mutexinoutset: res) //T4

T3

T4

1. inoutset property: tasks with a mutexinoutset

dependence create a cloud of tasks (an inout set) that

synchronizes with previous & posterior tasks that

dependent on the same list item

2. mutex property: Tasks inside the inout set can be

executed in any order but with mutual exclusion

11
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

What’s in the spec: sema depend clause (3)

◼ Task dependences are

defined among sibling tasks

//test1.cc

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task //T1

{

#pragma omp task depend(inout: x) //T1.1

x++;

#pragma omp taskwait

}

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

}

depend(inout: x)

//test2.cc

int a[100] = {0};

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: a[50:99]) //T1

compute(/* from */ &a[50], /*elems*/ 50);

#pragma omp task depend(in: a) //T2

print(/* from */ a, /* elem */ 100);

}

◼ List items used in the depend

clauses […] must indicate identical

or disjoint storage

T1

T2

???

12
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

What’s in the spec: sema depend clause (4)

◼ Iterators + deps: a way to define a dynamic number of dependences

std::list<int> list = ...;

int n = list.size();

#pragma omp parallel

#pragma omp single

{

for (int i = 0; i < n; ++i)

#pragma omp task depend(out: list[i]) //Px

compute_elem(list[i]);

#pragma omp task

print_elems(list);

}

depend(in: ???) //C

P1 PnP2 ...

C

???

depend(iterator(j=0:n), in : list[j]) //C

It seems innocent but it’s not:
depend(out: list.operator[](i))

Equivalent to:
depend(in: list[0], list[1], …, list[n-1])

13
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

Philosophy

14
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

◼ Task dependences are orthogonal to data-sharings

→ Dependences as a way to define a task-execution constraints

→ Data-sharings as how the data is captured to be used inside the task

Philosophy: data-flow model

// test1.cc

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) \

firstprivate(x) //T1

x++;

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

}

// test2.cc

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

x++;

#pragma omp task depend(in: x) \

firstprivate(x) //T2

std::cout << x << std::endl;

}

OK, but it always prints ‘0’ :(We have a data-race!!

15
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

◼ Properly combining dependences and data-sharings allow us to define

a task data-flow model

→Data that is read in the task → input dependence

→Data that is written in the task → output dependence

◼ A task data-flow model

→Enhances the composability

→Eases the parallelization of new regions of your code

Philosophy: data-flow model (2)

16
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

//test1_v2.cc

int x = 0, y = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{

x++;

y++;

}

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

#pragma omp task depend(in: y) //T3

std::cout << y << std::endl;

}

//test1_v1.cc

int x = 0, y = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{

x++;

y++; // !!!

}

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

#pragma omp taskwait

std::cout << y << std::endl;

}

//test1_v3.cc

int x = 0, y = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{

x++;

y++;

}

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

#pragma omp task depend(in: x) //T3

std::cout << y << std::endl;

}

//test1_v4.cc

int x = 0, y = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x, y) //T1

{

x++;

y++;

}

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

#pragma omp task depend(in: y) //T3

std::cout << y << std::endl;

}

If all tasks are properly annotated,

we only have to worry about the

dependendences & data-sharings of the new task!!!

Philosophy: data-flow model (3)

17
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

Use case

18
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

Use case: intro to Gauss-seidel

void serial_gauss_seidel(int tsteps, int size, int (*p)[size]) {

for (int t = 0; t < tsteps; ++t) {

for (int i = 1; i < size-1; ++i) {

for (int j = 1; j < size-1; ++j) {

p[i][j] = 0.25 * (p[i][j-1] + // left

p[i][j+1] + // right

p[i-1][j] + // top

p[i+1][j]); // bottom

}

}

}

}

For a specific t, i and j

Access pattern analysis

tn

Each cell depends on:

- two cells (north & west) that are

computed in the current time step, and

- two cells (south & east) that were

computed in the previous time step

19
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

Use case: Gauss-seidel (2)

void serial_gauss_seidel(int tsteps, int size, int (*p)[size]) {

for (int t = 0; t < tsteps; ++t) {

for (int i = 1; i < size-1; ++i) {

for (int j = 1; j < size-1; ++j) {

p[i][j] = 0.25 * (p[i][j-1] + // left

p[i][j+1] + // right

p[i-1][j] + // top

p[i+1][j]); // bottom

}

}

}

}

For an specific t

We can exploit the wavefront to

obtain parallelism!!

1st parallelization strategy

tn

20
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

Use case : Gauss-seidel (3)
void gauss_seidel(int tsteps, int size, int TS, int (*p)[size]) {

int NB = size / TS;

#pragma omp parallel

for (int t = 0; t < tsteps; ++t) {

// First NB diagonals

for (int diag = 0; diag < NB; ++diag) {

#pragma omp for

for (int d = 0; d <= diag; ++d) {

int ii = d;

int jj = diag – d;

for (int i = 1+ii*TS; i < ((ii+1)*TS); ++i)

for (int j = 1+jj*TS; i < ((jj+1)*TS); ++j)

p[i][j] = 0.25 * (p[i][j-1] + p[i][j+1] +

p[i-1][j] + p[i+1][j]);

}

}

// Lasts NB diagonals

for (int diag = NB-1; diag >= 0; --diag) {

// Similar code to the previous loop

}

}

}

21
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

Use case : Gauss-seidel (4)

void serial_gauss_seidel(int tsteps, int size, int (*p)[size]) {

for (int t = 0; t < tsteps; ++t) {

for (int i = 1; i < size-1; ++i) {

for (int j = 1; j < size-1; ++j) {

p[i][j] = 0.25 * (p[i][j-1] + // left

p[i][j+1] + // right

p[i-1][j] + // top

p[i+1][j]); // bottom

}

}

}

}

2nd parallelization strategy

multiple time iterations

We can exploit the wavefront

of multiple time steps to obtain MORE

parallelism!!

tn

tn+1

tn+2

tn+3

22
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

void gauss_seidel(int tsteps, int size, int TS, int (*p)[size]) {

int NB = size / TS;

#pragma omp parallel

#pragma omp single

for (int t = 0; t < tsteps; ++t)

for (int ii=1; ii < size-1; ii+=TS)

for (int jj=1; jj < size-1; jj+=TS) {

#pragma omp task depend(inout: p[ii:TS][jj:TS])

depend(in: p[ii-TS:TS][jj:TS], p[ii+TS:TS][jj:TS],

p[ii:TS][jj-TS:TS], p[ii:TS][jj+TS:TS])

{

for (int i=ii; i<(1+ii)*TS; ++i)

for (int j=jj; j<(1+jj)*TS; ++j)

p[i][j] = 0.25 * (p[i][j-1] + p[i][j+1] +

p[i-1][j] + p[i+1][j]);

}

}

}

Use case : Gauss-seidel (5)
inner matrix region

Q: Why do the input dependences
depend on the whole block rather

than just a column/row?

vs

23
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

void gauss_seidel(int tsteps, int size, int TS, int (*p)[size]) {

int NB = size / TS;

#pragma omp parallel

#pragma omp single

for (int t = 0; t < tsteps; ++t)

for (int ii=1; ii < size-1; ii+=TS)

for (int jj=1; jj < size-1; jj+=TS) {

#pragma omp task depend(inout: p[ii:TS][jj:TS])

depend(in: p[ii-TS:TS][jj:TS], p[ii+TS:TS][jj:TS],

p[ii:TS][jj-TS:TS], p[ii:TS][jj:TS])

{

for (int i=ii; i<(1+ii)*TS; ++i)

for (int j=jj; j<(1+jj)*TS; ++j)

p[i][j] = 0.25 * (p[i][j-1] * p[i][j+1] *

p[i-1][j] * p[i+1][j]);

}

}

}

Use case : Gauss-seidel (5)
inner matrix region

Q: Why do the input dependences
depend on the whole block rather

than just a column/row?

vs

24
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

◼ Adding dependences to the taskwait construct

→Using a taskwait construct to explicitly wait for some predecessor tasks

→Syntactic sugar!

Advanced features: deps on taskwait

int x = 0, y = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

x++;

#pragma omp task depend(in: y) //T2

std::cout << y << std::endl;

#pragma omp taskwait depend(in: x)

std::cout << x << std::endl;

}

25
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

◼Offer a way to manually handle dependences

→Useful for complex task dependences

→It allows a more efficient allocation of task dependences

→New omp_depend_t opaque type

→3 new constructs to manage dependable objects

→#pragma omp depobj(obj) depend(dep-type: list)

→#pragma omp depobj(obj) update(dep-type)

→#pragma omp depobj(obj) destroy

Advanced features: dependable objects (1)

26
Mastering Tasking with OpenMP – Task dependences

Michael Klemm

◼Offer a way to manually handle dependences

Advanced features: dependable objects (2)

int x = 0;

#pragma omp parallel

#pragma omp single

{

omp_depend_t obj;

#pragma omp depobj(obj) depend(inout: x)

#pragma omp task depend(depobj: obj) //T1

x++;

#pragma omp depobj(obj) update(in)

#pragma omp task depend(depobj: obj) //T2

std::cout << x << std::endl;

#pragma omp depobj(obj) destroy

}

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

x++;

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

}

T1

T2

Mastering Tasking with OpenMP – Free-agent threads

Bronis R. de Supinski
1

Free-agent threads
(OpenMP 6.0 feature)

Mastering Tasking with OpenMP – Free-agent threads

Bronis R. de Supinski
2

◼ Supports unstructured parallelism

→ unbounded loops

→ recursive functions

◼ Why are the parallel and single directives needed?

→ Otherwise all threads in the team generate (duplicate) tasks

→ Only threads in the team may execute tasks

Recall the tasking execution model

while (<expr>) {

...

}

void myfunc(<args>)

{

...; myfunc(<newargs>); ...;

}

Task pool

Parallel Team

#pragma omp parallel

#pragma omp single

while (elem != NULL) {

#pragma omp task

compute(elem);

elem = elem->next;

}

◼ Example (unstructured parallelism)

Mastering Tasking with OpenMP – Free-agent threads

Bronis R. de Supinski
3

◼ Positive aspects

→ Simplifies resource management

→ Clear semantics with respect to other teams

◼ Negative aspects

→ Ignores unutilized resources

→ Complicates code structure for task-only programs

◼ Alternative starting in OpenMP 6.0: free-agent threads

→ Unassigned threads in contention group may execute tasks

→ Can provide parallelism in the implicit parallel region

→ Exploits unused resources, common practice of parked threads

Is restricting tasks to a team good?

Task pool

Contention group

while (elem != NULL) {

#pragma omp task threadset(omp_pool)

compute(elem);

elem = elem->next;

}

◼ Example (no parallel directive needed)

Mastering Tasking with OpenMP – Free-agent threads

Bronis R. de Supinski
4

◼ Existing behavior is preserved by default

→ As if threadset clause is specified with value of omp_team

→ Tasks are still tied by default so free-agent thread executes the task completely if at all

→ Task synchronization (e.g., dependences, taskwait and taskgroup) unchanged

◼ Can use environment variables to control ICVs to reserve threads

→ At least two threads available for structured parallelism, at least two available to act as free-agents

→ Minimum for structured parallelism is one (the initial thread)

→ Sum of reservations should not exceed thread-limit-var ICV

Some details for free-agent threads

#pragma omp task threadset(omp_team)

{structured-block}

setenv OMP_THREADS_RESERVE "structured(2),free_agent(2)"

Mastering Tasking with OpenMP – Misc

Michael Klemm
1

Cancellation

Mastering Tasking with OpenMP – Misc

Michael Klemm
2

◼ Once started, parallel execution cannot be aborted in OpenMP 3.1

→Code regions must always run to completion

→ (or not start at all)

◼ Cancellation in OpenMP 4.0 provides a best-effort approach to

terminate OpenMP regions

→Best-effort: not guaranteed to trigger termination immediately

→Triggered “as soon as” possible

OpenMP 3.1 Parallel Abort

Mastering Tasking with OpenMP – Misc

Michael Klemm
3

◼ Two constructs:

→Activate cancellation:
 C/C++: #pragma omp cancel

 Fortran: !$omp cancel

→Check for cancellation:
 C/C++: #pragma omp cancellation point

 Fortran: !$omp cancellation point

◼ Check for cancellation only a certain points

→Avoid unnecessary overheads

→Programmers need to reason about cancellation

→Cleanup code needs to be added manually

Cancellation Constructs

Mastering Tasking with OpenMP – Misc

Michael Klemm
4

Cancellation Semantics

Thread A Thread B Thread C

cancel

cancellation point

cancellation point
p
a
ra

lle
l re

g
io

n

cancellation point

?

Mastering Tasking with OpenMP – Misc

Michael Klemm
5

Cancellation Semantics

Thread A Thread B Thread C

cancel

cancellation point

cancellation point

cancellation point

p
a
ra

lle
l re

g
io

n

Mastering Tasking with OpenMP – Misc

Michael Klemm
6

Cancellation Semantics

Thread A Thread B Thread C

cancel

cancellation point

cancellation point

cancellation point

?

p
a
ra

lle
l re

g
io

n

Mastering Tasking with OpenMP – Misc

Michael Klemm
7

Cancellation Semantics

Thread A Thread B Thread C

cancel

cancellation point

cancellation point

cancellation point

?

p
a
ra

lle
l re

g
io

n

Mastering Tasking with OpenMP – Misc

Michael Klemm
8

◼ Syntax:
#pragma omp cancel construct-type-clause [[,]if-clause]

!$omp cancel construct-type-clause [[,]if-clause]

◼ Clauses:
parallel

sections

for (C/C++)

do (Fortran)

taskgroup

if (scalar-expression)

◼ Semantics

→Requests cancellation of the inner-most OpenMP region of the type specified in
construct-type-clause

→ Lets the encountering thread/task proceed to the end of the canceled region

cancel Construct

Mastering Tasking with OpenMP – Misc

Michael Klemm
9

◼ Syntax:
#pragma omp cancellation point construct-type-clause

!$omp cancellation point construct-type-clause

◼ Clauses:
parallel

sections

for (C/C++)

do (Fortran)

taskgroup

◼ Semantics

→ Introduces a user-defined cancellation point

→Pre-defined cancellation points:

→ implicit/explicit barriers regions

→ cancel regions

cancellation point Construct

Mastering Tasking with OpenMP – Misc

Michael Klemm
10

◼ Cancellation only acts on tasks grouped by the taskgroup construct

→The encountering tasks jumps to the end of its task region

→Any executing task will run to completion
(or until they reach a cancellation point region)

→Any task that has not yet begun execution may be discarded
(and is considered completed)

◼ Tasks cancellation also occurs, if a parallel region is canceled.

→But not if cancellation affects a worksharing construct.

Cancellation of OpenMP Tasks

Mastering Tasking with OpenMP – Misc

Michael Klemm
11

Task Cancellation Example

binary_tree_t* search_tree_parallel(binary_tree_t* tree, int value) {

 binary_tree_t* found = NULL;

#pragma omp parallel shared(found,tree,value)

 {

#pragma omp master

 {

#pragma omp taskgroup

 {

 found = search_tree(tree, value);

 }

 }

 }

 return found;

}

Mastering Tasking with OpenMP – Misc

Michael Klemm
12

Task Cancellation Example

binary_tree_t* search_tree(
 binary_tree_t* tree, int value,
 int level) {

 binary_tree_t* found = NULL;

 if (tree) {

 if (tree->value == value) {

 found = tree;

 }

 else {

#pragma omp task shared(found)

 {

 binary_tree_t* found_left;

 found_left =
 search_tree(tree->left, value);

 if (found_left) {

#pragma omp atomic write

 found = found_left;

#pragma omp cancel taskgroup

 }

 }

#pragma omp task shared(found)

 {

 binary_tree_t* found_right;

 found_right =

 search_tree(tree->right, value);

 if (found_right) {

#pragma omp atomic write

 found = found_right;

#pragma omp cancel taskgroup

 }

 }

#pragma omp taskwait

 }

 }

 return found;

}

Mastering Tasking with OpenMP – Misc

Michael Klemm
13

Advanced Task Synchronization

Mastering Tasking with OpenMP – Misc

Michael Klemm
14

◼ Some APIs are based on asynchronous operations

→ MPI asynchronous send and receive

→ Asynchronous I/O

→ CUDA, HIP, and OpenCL stream-based offloading

→ In general: any other API/model that executes asynchronously with OpenMP (tasks)

◼ Example: HIP memory transfers

◼ Programmers need a mechanism to marry asynchronous APIs with the parallel
task model of OpenMP

Asynchronous API Interaction

do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);
do_something_else();
hipStreamSynchronize(stream);
do_other_important_stuff(dst);

Mastering Tasking with OpenMP – Misc

Michael Klemm
15

◼ This solution does not work!

Try 1: Use just OpenMP Tasks

void hip_example() {

#pragma omp task // task A

 {

 do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);

}
#pragma omp task // task B
{

do_something_else();
}
#pragma omp task // task C
{

hipStreamSynchronize(stream);
 do_other_important_stuff(dst);
 }
}

Race condition between the tasks A & C,
task C may start execution before
task A enqueues memory transfer.

Mastering Tasking with OpenMP – Misc

Michael Klemm
16

◼ This solution may work, but

→ takes a thread away from execution while the system is handling the data transfer.

→ may be problematic if called interface is not thread-safe

void hip_example() {

#pragma omp task depend(out:stream) // task A

 {

 do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);

}
#pragma omp task // task B
{

do_something_else();
}
#pragma omp task depend(in:stream) // task C
{

hipStreamSynchronize(stream);
 do_other_important_stuff(dst);
 }
}

Try 2: Use just OpenMP Tasks Dependences

Synchronize execution of tasks through dependence.
May work, but task C will be blocked waiting for
the data transfer to finish

Mastering Tasking with OpenMP – Misc

Michael Klemm
17

◼ OpenMP 5.0 introduces the concept of a detachable task

→Task can detach from executing thread without being “completed”

→Regular task synchronization mechanisms can be applied to await completion
of a detached task

→Runtime API to complete a task

◼ Detached task events: omp_event_handle_t datatype

◼ Detached task clause
detach(event)

◼ Runtime API
void omp_fulfill_event(omp_event_t event)

OpenMP Detachable Tasks

Mastering Tasking with OpenMP – Misc

Michael Klemm
18

1. Task detaches

2. taskwait construct cannot

Detaching Tasks

omp_event_handle_t event;

void detach_example() {

#pragma omp task detach(event)

 {

 important_code();

 }

 #pragma omp taskwait

}




omp_fulfill_event(event); 

Some other thread/task:



3. Signal event for completion

4. Task completes and taskwait

 can continue

Mastering Tasking with OpenMP – Misc

Michael Klemm
19

Putting It All Together

void callback(hipStream_t stream, hipError_t status, void *cb_dat) {
omp_fulfill_event(*((omp_event_handle_t *) cb_data));

}

void hip_example() {

 omp_event_handle_t hip_event;

#pragma omp task detach(hip_event) // task A

 {

 do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);
hipStreamAddCallback(stream, callback, &hip_event, 0);

 }
#pragma omp task // task B

do_something_else();

#pragma omp taskwait
#pragma omp task // task C

{
 do_other_important_stuff(dst);
} }





1. Task A detaches
2. taskwait does not continue
3. When memory transfer completes, callback is

 invoked to signal the event for task completion
4. taskwait continues, task C executes



Mastering Tasking with OpenMP – Misc

Michael Klemm
20

Removing the taskwait Construct

void callback(hipStream_t stream, hipError_t status, void *cb_dat) {
omp_fulfill_event(*((omp_event_handle_t *) cb_data));

}

void hip_example() {

 omp_event_handle_t hip_event;

#pragma omp task depend(out:dst) detach(hip_event) // task A

 {

 do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);
hipStreamAddCallback(stream, callback, &hip_event, 0);

 }
#pragma omp task // task B

do_something_else();

#pragma omp task depend(in:dst) // task C
{

 do_other_important_stuff(dst);
} }







1. Task A detaches and task C will not execute because
 of its unfulfilled dependency on A

2. When memory transfer completes, callback is
 invoked to signal the event for task completion

3. Task A completes and C’s dependency is fulfilled

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
1

Future Directions

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
2

◼ Officially released on November 14, 2024

→Reflects three years of work since release of OpenMP 5.2

→Includes 416 enacted issues, covering a wide range of content and complexity

◼ Free-agent threads significantly change execution model, implementations

◼ New concept for task dependences: transparent tasks

→Enables asynchronous target data (also enables other future extensions)

◼ User-defined induction and induction clause expand parallelism support

◼ Many significant device support improvements (e.g., workdistribute)

◼ Several additional (sequential) loop transforming directives

◼ Supported compound constructs are now defined based on a grammar

◼ Significant improvements to usability and correctness of specification

OpenMP 6.0 includes many major new features

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
3

◼ Other major additions to 6.0 include:

→Support for dependences and affinity of tasks generated by taskloop directives

→A new taskgraph directive that enables optimized task generation

◼ Task-generating constructs are fundamental to OpenMP offload model

→Most device constructs (e.g., target and target_update directives) already generate them

→Another major change: target_data is now a dependence sequence of three tasks

→Middle task is transparent by default

→ The construct now is also a taskgroup region by default

→Can specify no_wait and no_group to rely only on dependences for ordering

◼ Other constructs (e.g., parallel and teams) are composed of implicit tasks

→While not adopted for 6.0, expect to add transparent clause to many of them eventually

→Will enable no_wait to be supported for parallel construct

OpenMP tasking advances have pervasive impact

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
4

◼ Current OpenMP Language Committee Activities

◼OpenMP Organizational Overview

◼ Final Review of OpenMP 5.0, 5.1, 5.2 and 6.0 (included for reference)

Topics

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
5

OpenMP Language Committee Current Activities:
TR14 and OpenMP 6.1

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
6

◼ Significant progress has already been made

→ 18 issues have been adopted, mostly covering small updates to 6.0 additions

→ Language committee face-to-face meeting week after next will result in many more issues moving forward

◼ Targeting some significant improvements for device support

→ Support for dynamic groupprivate memory (e.g., small, optimized GPU memory pool) (done!)

→ Support for explicit control of pointer attachment (done!)

→ Improved support for implicit declare target in Fortran

→ Beginning work on “kernel language”, which will provide more low-level device control

◼ Expect continued refinement in many other areas

→ More loop transformations, refinements of other ones

→ Working on mechanism to control OpenMP defaults used for a translation unit

→ Considering additional extensions that build on transparent tasks (e.g., parallel nowait)

→ Many other small changes, particularly related to tasking and tool support, are likely

OpenMP 6.1 will refine and amend OpenMP 6.0

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
7

◼ True support for using multiple devices

→Device-to-device scoping support for atomic and other memory operations

→Support for bulk launch

→Support to update data on multiple devices (broadcast/multicast, other collectives)

→Support for work distribution across devices

→Considering relaxing restrictions on nested target regions

◼ Support for pipelining, data-flow, other parallelization models

◼ Support for event-based parallelism

◼ Characterizing loop-based work distribution constructs as transformations

◼ Efficient use of multiple compilation units (i.e., support for efficient IPO)

Things likely to be deferred to beyond 6.1

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
8

OpenMP Organizational Overview

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
10

OpenMP Roadmap

◼OpenMP has a well-defined roadmap:

→5-year cadence for major releases

→One minor release in between

→OpenMP 5.2 was added as a second minor release before OpenMP version 6.0

→(At least) one Technical Report (TR) with feature previews in every year

Public Comment
Draft (TR15*)

Public Comment
Draft (TR13)

Public Comment
Draft (TR10)

Nov’20 Nov’21 Nov’22 Nov’23 Nov’24 Nov’25

OpenMP 5.1 OpenMP 6.1TR11 OpenMP 6.0

* Numbers assigned to TRs may change if additional TRs are released.

TR16*OpenMP 5.2 TR12

Nov’26

TR14*

Nov’27

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
11

Development Process of the Specification

◼Modifications to the OpenMP specification follow a (strict) process:

◼ Release process for specifications:

Proposal
Impl.

in LaTeX
1st vote 2nd vote Verify

Merge to
main

Draft Editing
Comment

Draft
Quality
Control

Final Draft
ARB

Approval

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
12

User Outreach & Education

Check out openmp.org/news/events-calendar/

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
13

◼OpenMP continues to grow

→32 members currently

◼ You can contribute to our annual releases

◼ Attend IWOMP, understand and shape research directions

◼OpenMP membership types now include less expensive memberships

→Please let us know if you would be interested

Help Us Shape the Future of OpenMP

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
14

Final Review of OpenMP 5.0, 5.1, 5.2 and 6.0
Included for Reference

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
15

◼ OpenMP 5.0

→Addressed several major open issues for OpenMP

→Included 293 passed tickets

◼ OpenMP 5.1

→Includes many refinements to 5.0 additions

→Included 254 passed GitHub issues

◼ OpenMP 5.2

→Mostly address quality of specification issues but also refines 5.0 and 5.1 additions

→Included 131 passed GitHub issues

Ratified OpenMP 5.0 in November 2018,
Ratified OpenMP 5.1 in November 2020

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
16

◼ Significant extensions to improve usability

→OpenMP contexts, metadirective and declare variant

→Addition of requires directive, including support for unified shared memory

→Memory allocators and support for deep memory hierarchies

→Descriptive loop construct

→Ability to quiesce OpenMP threads

→Support to print/inspect affinity state

→Release/acquire semantics added to memory model

→Support for C/C++ array shaping

◼ First (OMPT) and third (OMPD) party tool support

Major new features in OpenMP 5.0

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
17

◼ Some significant extensions to existing functionality

→Verbosity reducing changes such as implicit declare target directives

→User defined mappers provide deep copy support for map clauses

→Support for reverse offload

→Support for task reductions , including on taskloop construct, task affinity, new

dependence types, depend objects and detachable tasks

→Allows teams construct outside of target construct (i.e., on host)

→Supports collapse of non-rectangular loops

→Scan extension of reductions

◼ Major advances for base language normative references

→Completed support for Fortran 2003

→Added initial support of Fortran 2008, C11, C++11, C++14 and C++17

Major new features in OpenMP 5.0

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
18

◼ Supports collapse of imperfectly nested loops

◼ Supports != on C/C++ loops

◼ Adds conditional modifier to lastprivate

◼ Support use of any C/C++ lvalue in depend clauses

◼ Permits declare target on C++ classes with virtual members

◼ Clarification of declare target C++ initializations

◼ Adds task modifier on many reduction clauses

◼ Adds depend clause to taskwait construct

OpenMP 5.0 clarifications and enhancements

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
19

◼ Adds full support for C11, C++11, C++14, C++17, C++20 and

Fortran 2008 and partial support for Fortran 2018

◼ Extends directive syntax to C++ attribute specifiers

◼ The scope construct supports reductions within parallel regions

→Christian discussed this enhancement in another session

◼ Extends atomic construct to support compare-and-swap, min and max

→Detailed these enhancements in another session

◼ Adds many clauses and clause modifiers including:

→nowait to taskwait construct

→strict modifier to clauses on the taskloop construct

OpenMP 5.1 refines existing functionality

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
20

◼ Support for mapping (translated) function pointers

◼ Device-specific environment variables to control their ICVs

◼ nothing directive supports metadirective clarity and completeness

◼ Several new runtime routines, including more memory allocation flavors

◼ Deprecations include:

→The master affinity policy and master construct

→Cray pointers

→Many enum values, most related to OMPT (first-party tool interface)

OpenMP 5.1 refines existing functionality

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
21

◼ The interop construct

→Improves native device support (e.g., CUDA streams)

→Also supports interoperability with CPU-based libraries (e.g., TBB)

◼ The new dispatch construct, improved declare variant directive

→Enable use of variants with device-specific arguments

→Elision of “unrecognized” code

OpenMP 5.1 adds some significant extensions

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
22

◼ The assume directive

→Supports optimization hints based on invariants

→Supports promise to limit OpenMP usage to (optimizable) subsets

◼ Loop transformation directives: The tile and unroll directives

→Control use of traditional sequential optimizations

→Ensure that they are applied when, where appropriate relative to parallelization

OpenMP 5.1 adds some significant extensions

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
23

◼ Use error directive to interact with the compiler

◼ Compiler displays msg-string as part of implementation-defined message

◼ The at clause determines when the effect of the directive occurs

→ compilation: If encountered during compilation in a declarative context

 (useful along with metadirective) or is reachable at runtime

→ execution: If the code location is encountered during execution (similar to assert())

◼ The severity clause determines compiler action

→ warning: Print message only (default)

→ fatal: Stop compilation or execution

The error directive supports
user-defined warnings and errors

#pragma omp error [at(compilation|execution)] [severity(fatal|warning)] \

 [message(msg-string)]

 structured-block

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
24

◼ Use masked construct to limit parallel execution (low cost: no data environ.)

◼ Encountering thread executes if filter clause matches its thread number

◼ Default (i.e., no clause) is equivalent to deprecated master construct

◼ Future (i.e., OpenMP 6.0) enhancements planned

→Define concept of thread groups, a subset of the threads in a team

→Extend masked to filter based on thread groups or booleans (via clause modifier)

→filter clause added to other constructs, relying on thread group concept

The masked construct supports
filtering execution per thread

#pragma omp masked [filter(integer-expression)]

 structured-block

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
25

◼ Large portions of specification now generated from JSON-based database

→Section headers and directive and clause format

→Cross references, index entries, hyperlinks and many other document details

→Long-term plan will capture sufficient information in database to generate much more, including

grammar, quick reference guide, and header and runtime library routine stub files

◼ Improves specification of OpenMP syntax

→Ensuring syntax of directives and clauses is well-specified and consistent

→Ensuring restrictions are consistent and not just implied by syntax

→Deprecating one-off syntax choices, many other inconsistencies (12 new deprecation entries)

→Makes C++ attribute syntax a first-class citizen

◼ Many other minor improvements

OpenMP 5.2 improves quality of the specification

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
26

◼ Free-agent threads significantly change execution model, implementations

◼ New concept for task dependences: transparent tasks

→Enables asynchronous target data (also enables other future extensions)

◼ The target_data directive is now a dependence sequence of three task

◼ Support for dependences and affinity of tasks generated by taskloop

◼ The taskgraph directive enables optimized task generation

◼ User-defined induction and induction clause expand parallelism support

◼ Many significant device support improvements (e.g., workdistribute)

◼ Several additional (sequential) loop transforming directives

◼ Supported compound constructs are now defined based on a grammar

◼ Significant improvements to usability and correctness of specification

OpenMP 6.0 includes many major new features

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
27

◼ Simple inductions are similar to reductions, particulary with use of inscan

→Avoids complexity needed to avoid serialization for parallel scan computations

◼ User-defined induction greatly expands expressible loop parallelism

→Can define complex functions to perform computations with dependences

→Can use collector clause to specify closed form function to enable starting at

arbitrary iterations (typically used for start of chunks but can allow arbitrarily)

Induction: Parallelization despite dependences
xi = x0;

result = 0.0;

#pragma omp parallel for reduction(+: result) induction(step(x), *: xi)

for (I = 0; I < N; i++) {

 result += c[i] * xi;

 xi *= x;

}

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
28

◼ Pre-6.0 need parallel masked directive so multiple threads execute tasks

What is the effect of the following code?
// assume in main with initialization omitted

// assume no OpenMP directives omitted

TS = 4096;

#pragma omp taskloop grainsize(TS)

for (i = 0; i < SIZE; i++) {

 A[i] = A[i] * B[i] * s;

}

// assume in main with initialization omitted

// assume no OpenMP directives omitted

TS = 4096;

#pragma omp parallel masked

#pragma omp taskloop grainsize(TS)

for (i = 0; i < SIZE; i++) {

 A[i] = A[i] * B[i] * s;

}

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
29

◼ OpenMP 6.0 defines OpenMP threads as members of logical thread pool

→Pool size can be specified by OMP_THREAD_LIMIT environment variable

◼ OpenMP 6.0 also adds the concept of free-agent threads

→Do not need parallel masked directive

→Instead threadset clause can specify that unassigned threads may execute tasks

6.0 evolves execution model significantly
// assume in main with initialization omitted

// assume no OpenMP directives omitted

TS = 4096;

#pragma omp taskloop grainsize(TS) threadset(omp_pool)

for (i = 0; i < SIZE; i++) {

 A[i] = A[i] * B[i] * s;

}

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
30

◼ Successive calls to my_func with the same M are ordered correctly in
OpenMP 5.2 and earlier if they are issued in the same task

→Ensures all uses of task construct will not deadlock

→Other synchronization can alleviate constraint by eliminating concurrency of tasks from

different calls so this solution does not provide the desired result

Task dependences constrain modularity
// assume library must ensure fine-grain dependences are honored

int my_func(double *M, double *v) {

 int i, j, k;

 for (i = 0; i < N_ROWS; i += ROWS_PER_TASK) {

 #pragma omp task depend(inout:M[i*N_COLS])

 for (j = 0; j < ROWS_PER_TASK; j++) {

 for (k = 0; k < N_COLS; k++) {

 M[(i+j)*N_COLS + k] = M[(i+j)*N_COLS + k] * v[k]; } } }

 return 0;

}

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
31

◼ The calls to my_func are ordered because of the dependence shown

◼ These tasks are transparent importing and exporting (“omp_impex”) tasks

→Dependences expressed in the calls are now imported and exported

→Deadlock freedom is still guaranteed

Transparency supports rich dependence graphs
// assume my_func as in previous example

double M[N_ROWS*NCOLS], v[NUM_VS][N_COLS];

int i;

// code to initialize M and v omitted for brevity

for (i = 0; i < NUM_VS; i++) {

 #pragma omp task depend(inout:i) transparent(omp_impex)

 my_func(M, &v[i*N_COLS]);

}

Mastering Tasking with OpenMP – Future Directions

Bronis R. de Supinski
32

◼ The parallel directive will accept a new modifier and two “new” clauses

◼ Using strict prescriptiveness requires nthreads to be provided

◼ Clauses, previously available on error directive, effective with strict if
cannot provide nthreads

→Display msg-string as part of implementation-defined message

→If severity is fatal execution is terminated

→If severity is warning message is displayed but execution continues

◼ Also now allowed to provide a list for nthreads to support nested parallelism

Extended parallel directive to support
complete user control of number of threads

#pragma omp parallel [num_threads(prescriptiveness: nthreads)] \

 [severity(fatal|warning)][message(msg-string)]

 structured-block

	00-ct-tasking-titlepage
	Slide 1
	Slide 2
	Slide 3

	01-ct-openmp-overview
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12

	02-xt-tasking-model
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

	03-mk-tasking-uc-taskloop
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

	04-ct-tasking-cutoffs
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

	05-ct-tasking-affinity
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	06-xt-tasking-dependences
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

	07a-brds-tasking-freeagent
	Slide 1
	Slide 2
	Slide 3
	Slide 4

	07b-mk-tasking-cancellation
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

	08-brds-tasking-future
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

