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◼ OpenMP Overview (~20 min.)

◼ Techniques to Obtain High Performance

with OpenMP: Memory Access (~30 min.)

◼ Techniques to Obtain High Performance

with OpenMP: Loops (~30 min.)

◼ Techniques to Obtain High
Performance with OpenMP:

Vectorization (~20 min.)

◼ OpenMP for Attached Compute

Accelerators (~90 min.)

◼ Future OpenMP Directions (~20 min.)

Agenda – 09:00 through 13:00 ISC Time ☺

Break:
• Coffee: 11:00 – 11:30
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Updated slides

• Slides are never perfect …

• … but we offer a free update service :-)

https://bit.ly/isc25-adv-omp
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Core Concepts: Worksharing
and Tasking
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◼ De-facto standard Application Programming Interface (API) to write

shared memory parallel

applications in C,

C++, and Fortran

◼ Consists of compiler directives,

runtime routines and

environment variables

◼ Version 5.0 was released

at SC18

◼ Version 5.2 was released

at SC21

◼ Version 6.0 was released

at SC24

What is OpenMP?

Parallel
Regions

Work-
sharing

Tasking

Memory
Manage-

ment

Devices

Vector-
ization
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The OpenMP Execution Model

Fork and Join Model
Primary

Thread

Worker

Threads
Parallel 

region

Synchronization

Parallel 

region

Worker

Threads

Synchronization

#pragma omp parallel
{

....
}

#pragma omp parallel
{

....
}
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◼ The work is distributed over the threads

◼ Must be enclosed in a parallel region

◼ Must be encountered by all threads in

the team, or none at all

◼ No implied barrier on entry

◼ Implied barrier on exit (unless the nowait

clause is specified)

◼ A work-sharing construct does not launch

any new threads

The Worksharing Constructs

#pragma omp for
{

....
}

#pragma omp sections
{

....
}

#pragma omp single
{

....
}
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!$omp task [clause[[,] clause]...]

…structured-block…

!$omp end task

Synchronization

Cutoff Strategies

Data Environment

◼ Deferring (or not) a unit of work (executable for any member of the team)

◼ Where clause is one of:

The task construct

→ if(scalar-expression)

→ mergeable

→ final(scalar-expression)

→ depend(dep-type: list)

→ untied

→ priority(priority-value)

→ affinity(list)

→ private(list)

→ firstprivate(list)

→ shared(list)

→ default(shared | none)

→ in_reduction(r-id: list)

→ allocate([allocator:] list)

→ detach(event-handler)

#pragma omp task [clause[[,] clause]...]

{structured-block}

Task Scheduling
Miscellaneous
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◼ Supports unstructured parallelism

→ unbounded loops

→ recursive functions

◼ Several scenarios are possible:

→ single creator, multiple creators, nested tasks (tasks & WS)

◼ All threads in the team are candidates to execute tasks

Tasking execution model

while ( <expr> ) {

...

}

void myfunc( <args> )

{

...; myfunc( <newargs> ); ...;

}

Task pool

Parallel Team

#pragma omp parallel

#pragma omp single

while (elem != NULL) {

#pragma omp task

compute(elem);

elem = elem->next;

}

◼ Example (unstructured parallelism)
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◼ Single: only one thread in the team executes the code enclosed

◼Masked: rule-based selection of threads

for region execution

Single and Master and Masked / 1

#pragma omp single [private][firstprivate] \
[copyprivate][nowait]

{
<code-block>

}

#pragma omp masked [filter(integer-expression)]
{<code-block>}

There is no implied 

barrier on entry or 

exit !
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◼ Single: only one thread in the team executes the code enclosed

◼Masked: rule-based selection of threads for region execution

→Replacement of master construct:

Single and Master and Masked / 2

#pragma omp single [private][firstprivate] \
[copyprivate][nowait]

{
<code-block>

}

#pragma omp masked [filter(integer-expression)]
{<code-block>}

#pragma omp masked [filter(0)]
{<code-block>}
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Synchronization
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The OpenMP Memory Model

◆ All threads have access 
to the same, globally 
shared memory

◆ Data in private memory 
is only accessible by the 
thread owning this 
memory

◆ No other thread sees 
the change(s) in private 
memory

◆ Data transfer is through 
shared memory and is 
100% transparent to the 
application

T

private
memory

T

private
memory

T T
private

memory

private
memory

T

private
memory

Shared
Memory

Private data is undefined on entry and exit
• Can use firstprivate and lastprivate to address this
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◼OpenMP barrier (implicit or explicit)

→All tasks created by any thread of the current Team are guaranteed to be 

completed at barrier exit

◼ Task barrier: taskwait

→Encountering task is suspended until child tasks are complete

→Applies only to direct childs, not descendants!

Barrier and Taskwait Constructs

C/C++

#pragma omp barrier

C/C++

#pragma omp taskwait
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◼ To minimize synchronization, some directives support the optional 

nowait clause

→If present, threads do not synchronize/wait at the end of that particular construct

◼ In C, it is one of the clauses on the pragma

◼ In Fortran, it is appended at the closing part of the construct

The nowait Clause

!$omp do 
:
:

!$omp end do nowait

#pragma omp for nowait
{ 

:
}
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◼ With task dependencies, a task cannot be executed until all its predecessor tasks 

are completed

Task depend clause

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{ ... }

#pragma omp task depend(in: x)    //T2

{ ... }

#pragma omp task depend(in: x)    //T3

{ ... }

#pragma omp task depend(inout: x) //T4

{ ... }

}

T1

T2 T3

T4
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◼ Specifies a wait on completion of child tasks and their 

descendent tasks

→„deeper“ sychronization than taskwait, but

→with the option to restrict to a subset of all tasks (as 
opposed to a barrier)

The taskgroup Construct

C/C++

#pragma omp taskgroup

... structured block ...

Fortran

!$omp taskgroup

... structured block ...

!$omp end taskgroup
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User Defined Reductions
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◼ Use declare reduction directive to define operators

◼ Operators used in reduction clause like predefined ops

◼ reduction-identifier gives a name to the operator

→Can be overloaded for different types

→Can be redefined in inner scopes

◼ typename-list is a list of types to which it applies

◼ combiner expression specifies how to combine values

◼ initializer specifies the operator’s identity value

→initializer-expression is an expression or a function

#pragma omp declare reduction (reduction-identifier : 

typename-list : combiner) [initializer(initializer-expr)]

User Defined Reductions (UDRs) expand 
OpenMP’s usability
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◼ Declare the reduction operator

◼ Use the reduction operator in a reduction clause

◼ Private copies created for a reduction are initialized to the identity 
that was specified for the operator and type
→ Default  identity defined if identity clause not present

◼ Compiler uses combiner to combine private copies
→ omp_out refers to private copy that holds combined value

→ omp_in refers to the other private copy

#pragma omp declare reduction (mindex : index_struct: 

(omp_in.value < omp_out.value) ? omp_in : omp_out)

initializer(omp_priv = {.value = MAX_INT, .index = 0})

index_struct min_value = (.value = MAX_INT, .index = 0);

#pragma omp parallel for reduction (mindex : min_value)

for (i = 0; I < NUM_ELEMENTS; i++) 

if ( a[i] < min_value.value) {

min_value.value = a[i]; min_value.index = i;}

A simple UDR example
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Atomics



Advanced OpenMP Tutorial – OpenMP Overview36

◼ Use atomic construct for mutually exclusive access to 

a single memory location 

◼ expression-stmt restricted based on type of atomic 

◼ update, the default behavior, reads and writes the 

single memory location atomically

◼ read reads location atomically

◼ write writes location atomically

◼ capture updates or writes location and captures its 

value (before or after update) into a private variable

#pragma omp atomic [read|write|update] [capture] [compare|weak] [fail|seq_cst]

expression-stmt

The atomic construct supports efficient 
parallel accesses



Advanced OpenMP Tutorial – OpenMP Overview37

◼ Early versions did not support atomic capture

◼ Atomic capture provides the needed functionality

int schedule (int upper) {

static int iter = 0; int ret;

ret = iter;

#pragma omp atomic

iter++;

if (ret <= upper) { return ret; }

else { return -1; }  //no more iters

}

int schedule (int upper) {

static int iter = 0; int ret;

#pragma omp atomic capture

ret = iter++;     // atomic capture

if (ret <= upper) { return ret; }

else { return -1; }  // no more iters

}

OpenMP supports several atomic operations
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◼ Naive attempt to write user-level critical section
→Assume shared_* are all shared variables

→Assume only two threads access shared_lock

◼ What’s wrong with this code?

int local, do_not_have_lock = 1;

while (do_not_have_lock) {

#pragma omp atomic capture

do_not_have_lock = shared_lock++;

}

local =  shared_a;

shared_a = shared_b;

shared_b = local;

#pragma omp atomic write

shared_lock = 0;

User-level synchronization supported by 
memory ordering clauses
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◼ Correct user-level critical section must include flushes
→Assume shared_* are all shared variables

→Assume only two threads access shared_lock

◼ Alternatively, must add several flushes (more than 2)

int local, do_not_have_lock = 1;

while (do_not_have_lock) {

#pragma omp atomic capture seq_cst

do_not_have_lock = shared_lock++;

}

local =  shared_a;

shared_a = shared_b;

shared_b = local;

#pragma omp atomic write seq_cst

shared_lock = 0;

User-level synchronization must ensure that 
memory is consistent



Advanced OpenMP Tutorial – Memory Access1

Understanding Memory 
Access
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Memory Affinity
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◼ Serial code: all array elements are allocated in the memory of the

NUMA node closest to the core executing the initializer thread (first

touch)

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]
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◼ First Touch w/ parallel code: all array elements are allocated in the 

memory of the NUMA node that contains the core that executes the

thread that initializes the partition

double* A;

A = (double*)

    malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for proc_bind(spread)

for (int i = 0; i < N; i++) {

   A[i] = 0.0;

}

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N/2] A[N/2] … A[N]

First Touch Memory Placement
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◼ Stream example with and without parallel initialization.

→ 2 socket sytem with Xeon X5675 processors, 12 OpenMP threads

copy scale add triad

ser_init 18.8 GB/s 18.5 GB/s 18.1 GB/s 18.2 GB/s

par_init 41.3 GB/s 39.3 GB/s 40.3 GB/s 40.4 GB/s

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,N-1]

b[0,N-1]

c[0,N-1]

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,(N/2)-1]

b[0,(N/2)-1]

c[0,(N/2)-1]

ser_init:

par_init:

MEM

MEM

a[N/2,N-1]

b[N/2,N-1]

c[N/2,N-1]

Serial vs. Parallel Initialization
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Thread Binding and Memory 
Placement
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Get Info on the System Topology

◼ Before you design a strategy for thread binding, you should have a basic 

understanding of the system topology:

→ Intel MPI‘s cpuinfo tool

→module switch openmpi intelmpi

→cpuinfo

→Delivers information about the number of sockets (= packages) and the mapping of processor IDs to 

CPU cores used by the OS

→ hwlocs‘ hwloc-ls tool

→hwloc-ls

→Displays a representation of the system topology, separated into NUMA nodes, along with the mapping 

of processor IDs to CPU cores used by the OS and additional information on caches
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◼ Selecting the „right“ binding strategy depends not only on the topology, but also on 

the characteristics of your application.

→ Putting threads far apart, i.e., on different sockets

→May improve the aggregated memory bandwidth available to your application

→May improve the combined cache size available to your application

→May decrease performance of synchronization constructs

→ Putting threads close together, i.e., on two adjacent cores that possibly share some caches

→May improve performance of synchronization constructs

→May decrease the available memory bandwidth and cache size

◼ If you are unsure, just try a few options and then select the best one.

Decide for Binding Strategy
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◼ Define OpenMP places

→ set of OpenMP threads running on one or more processors

→ can be defined by the user, i.e., OMP_PLACES=cores

◼ Define a set of OpenMP thread affinity policies

→ SPREAD: spread OpenMP threads evenly among the places,

partition the place list

→ CLOSE: pack OpenMP threads near primary thread

→ PRIMARY: collocate OpenMP thread with primary thread

◼ Goals

→ user has a way to specify where to execute OpenMP threads for locality between OpenMP threads / less 

false sharing / memory bandwidth

Since OpenMP 4.0: Places + Policies
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◼ Assume the following machine:

→ 2 sockets, 4 cores per socket, 4 hyper-threads per core

◼ Abstract names for OMP_PLACES:

→ threads: Each place corresponds to a single hardware thread.

→ cores: Each place corresponds to a single core (having one or more hardware threads).

→ sockets: Each place corresponds to a single socket (consisting of one or more cores).

→ ll_caches (5.1): Each place corresponds to a set of cores that share the last level cache.

→ numa_domains (5.1): Each places corresponds to a set of cores for which their closest memory is: the 

same memory; and at a similar distance from the cores.

p0 p1 p2 p3 p4 p5 p6 p7

OMP_PLACES env. variable
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◼ Example‘s Objective:

→ separate cores for outer loop and near cores for inner loop

◼ Outer Parallel Region: proc_bind(spread), Inner: proc_bind(close)

→ spread creates partition, compact binds threads within respective partition

OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-4):4:8   = cores

#pragma omp parallel proc_bind(spread) num_threads(4)

#pragma omp parallel proc_bind(close) num_threads(4)

◼ Example

→ initial

→ spread 4

→ close 4

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

OpenMP 4.0: Places + Policies
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◼ Assume the following machine:

→ 2 sockets, 4 cores per socket, 4 hyper-threads per core

◼ Parallel Region with two threads, one per socket

→ OMP_PLACES=sockets

→ #pragma omp parallel num_threads(2) proc_bind(spread)

p0 p1 p2 p3 p4 p5 p6 p7

More Examples (1/3)
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◼ Assume the following machine:

→ 2 sockets, 4 cores per socket, 4 hyper-threads per core

◼ Parallel Region with four threads, one per core,

but only on the first socket

→ OMP_PLACES=cores

→ #pragma omp parallel num_threads(4) proc_bind(close)

p0 p1 p2 p3 p4 p5 p6 p7

More Examples (2/3)
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◼ Spread a nested loop first across two sockets,

then among the cores within each socket,

only one thread per core

→ OMP_PLACES=cores

→ #pragma omp parallel num_threads(2) proc_bind(spread)

→ #pragma omp parallel num_threads(4) proc_bind(close)

◼ Places API routines allow to

→ query information about binding…

→ query information about the place partition…

More Examples (3/3)
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◼ Simple routine printing the processor ids of the place the calling thread 

is bound to:

Places API: Example

void print_binding_info() {

     int my_place = omp_get_place_num();

     int place_num_procs = omp_get_place_num_procs(my_place);

     

     printf("Place consists of %d processors: ", place_num_procs);

     int *place_processors = malloc(sizeof(int) * place_num_procs);

     omp_get_place_proc_ids(my_place, place_processors)

     for (int i = 0; i < place_num_procs - 1; i++) {

             printf("%d ", place_processors[i]);

     }

     printf("\n");

     free(place_processors);

}
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◼ Set OMP_DISPLAY_AFFINITY=TRUE

→Instructs the runtime to display formatted affinity information

→Example output for two threads on two physical cores:

→Output can be formatted with OMP_AFFINITY_FORMAT env var or 

corresponding routine

→Formatted affinity information can be printed with
omp_display_affinity(const char* format)

OpenMP 5.x way to do this

nesting_level=   1,   thread_num=   0,   thread_affinity=   0,1

nesting_level=   1,   thread_num=   1,   thread_affinity=   2,3
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◼ Example:

→Possible output:

Affinity format specification

t omp_get_team_num()

T omp_get_num_teams()

L omp_get_level()

n omp_get_thread_num()

N omp_get_num_threads()

a omp_get_ancestor_thread_num() at level-1

H hostname

P process identifier

i native thread identifier

A thread affinity: list of processors (cores)

OMP_AFFINITY_FORMAT=“Affinity: %0.3L %.8n %.15{A} %.12H“

Affinity: 001        0      0-1,16-17      host003

Affinity: 001        1      2-3,18-19      host003
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◼ Explicit NUMA-aware memory allocation:

→By carefully touching data by the thread which later uses it

→By changing the default memory allocation strategy
→Linux: numactl command

→By explicit migration of memory pages

→Linux: move_pages()

◼ Example: using numactl to distribute pages round-robin:
→numactl –interleave=all ./a.out

Fine-grained control of Memory Affinity
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Memory Management
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◼ Traditional DDR-based memory

◼ High-bandwidth memory

◼ Non-volatile memory

◼…

Different kinds of memory

CPU: Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz

Freq Govenor: performance

---------------------

available: 4 nodes (0-3)

node 0 cpus: 0 2 4 6 8 10 12 14 16 18 

20 22 24 26 28 30 32 34 36 38

node 0 size: 191936 MB

node 0 free: 178709 MB

node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 

25 27 29 31 33 35 37 39

node 1 size: 192016 MB

node 1 free: 179268 MB

node 2 cpus:

node 2 size: 759808 MB

node 2 free: 759794 MB

node 3 cpus:

node 3 size: 761856 MB

node 3 free: 761851 MB

node distances:

node   0   1   2   3 

0:  10  21  17  28 

1:  21  10  28  17 

2:  17  28  10  28 

3:  28  17  28  10

Cascade Lake (Leonide at INRIA)

DRAM + Optane
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◼ Allocator := an OpenMP object that fulfills requests to allocate and 

deallocate storage for program variables

◼OpenMP allocators are of type omp_allocator_handle_t

◼ Default allocator for host

→via OMP_ALLOCATOR env. var. or corresponding API

◼OpenMP 5.0 supports

a set of memory allocators

Memory Management
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◼ Selection of a certain kind of memory

OpenMP allocators

Allocator name Storage selection intent

omp_default_mem_alloc use default storage

omp_large_cap_mem_alloc use storage with large capacity

omp_const_mem_alloc use storage optimized for read-only variables

omp_high_bw_mem_alloc use storage with high bandwidth

omp_low_lat_mem_alloc use storage with low latency

omp_cgroup_mem_alloc use storage close to all threads in the contention group 
of the thread requesting the allocation

omp_pteam_mem_alloc use storage that is close to all threads in the same 
parallel region of the thread requesting the allocation

omp_thread_local_mem_alloc use storage that is close to the thread requesting the 
allocation
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◼ New clause on all constructs with data sharing clauses:
→ allocate( [allocator:] list )

◼ Allocation:
→ omp_alloc(size_t size, omp_allocator_handle_t allocator)

◼ Deallocation:
→ omp_free(void *ptr, const omp_allocator_handle_t allocator)

◼ allocate directive: standalone directive for allocation, or declaration of allocation 

stmt.

Using OpenMP allocators
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OpenMP Allocator Traits / 1
sync_hint contended, uncontended, serialized, private default: contended

alignment positive integer value that is a power of two default: 1 byte

access all, memspace, device, cgroup, pteam, thread default: memspace

pool_size positive integer value

fallback default_mem_fb, null_fb, abort_fb, allocator_fb default: default_mem_fb

fb_data an allocator handle

pinned true, false default: false

partition environment, nearest, blocked, interleaved default: environment

pin_device conforming device number

preferred_device conforming device number

target access single, multiple default: single

atomic_scope all, device default: device

part_size positive integer value

partitioner a memory partitioner handle

partitioner_arg an integer value 0
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◼ fallback: describes the behavior if the allocation cannot be fulfilled

→default_mem_fb: return system’s default memory

→Other options: null, abort, or use different allocator

◼ pinned: request pinned memory, i.e. for GPUs,

→device may be specified

OpenMP Allocator Traits / 2



Advanced OpenMP Tutorial – Memory Access27

◼ partition: partitioning of allocated memory of physical storage 

resources (think of NUMA)

→environment: use system’s default behavior

→nearest: most closest memory

→blocked: partitioning into approx. same size with at most one block per 

storage resource

→interleaved: partitioning in a round-robin fashion across the storage 

resources, in which part_size specifies the size of individual partitions

→partitioner: definition of memory parts and distribution across storage are 

defined by a memory partitioner

OpenMP Allocator Traits / 3
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◼ Example code:
const omp_alloctrait_t traits[] ={{omp_atk_partition,

omp_atv_interleaved},

{omp_atk_part_size, 1024*1024} };

omp_allocator_handle_t numa_dev_alloc = 

omp_init_allocator(omp_default_mem_space, 2, traits);

int * a = omp_alloc(numa_dev_alloc, 6*1024*1024);

→Distributes chunks of memory:

OpenMP Allocator Traits / 4

Example created by Alex Duran (Intel)
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OpenMP Allocator Traits / 5
sync_hint contended, uncontended, serialized, private default: contended

alignment positive integer value that is a power of two default: 1 byte

access all, memspace, device, cgroup, pteam, thread default: memspace

pool_size positive integer value

fallback default_mem_fb, null_fb, abort_fb, allocator_fb default: default_mem_fb

fb_data an allocator handle

pinned true, false default: false

partition environment, nearest, blocked, interleaved default: environment

pin_device conforming device number

preferred_device conforming device number

target access single, multiple default: single

atomic_scope all, device default: device

part_size positive integer value

partitioner a memory partitioner handle

partitioner_arg an integer value 0
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◼ partition: partitioning of allocated memory of physical storage 

resources (think of NUMA)

→environment: use system’s default behavior

→nearest: most closest memory

→blocked: partitioning into approx. same size with at most one block per 

storage resource

→interleaved: partitioning in a round-robin fashion across the storage 

resources, in which part_size specifies the size of individual partitions

→partitioner: definition of memory parts and distribution across storage are 

defined by a memory partitioner

OpenMP Allocator Traits / 6
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◼Memory Partitioner := an OpenMP object that represents mechanisms 

to create and destroy memory partitions

→Memory Partition := a definition how an allocator divides memory into parts

→Memory Part := a storage block in a single storage resource within a memory space

◼ omp_init_mempartitioner routine: initializes a partitioner that …

→… can be used with an OpenMP allocator

→... takes the argument compute_proc to determine the number of memory parts 

and their distribution across the storage resources

→+ further management and cleanup routines

◼Memory Space Retrieving Routines: return memory space handles

OpenMP Memory Partitioner
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◼ Construction of allocators with traits via
→omp_allocator_handle_t omp_init_allocator(

omp_memspace_handle_t memspace,

int ntraits, const omp_alloctrait_t traits[]);

→Selection of memory space mandatory

→Empty traits set: use defaults

◼ Allocators have to be destroyed with *_destroy_*

◼ Custom allocator can be made default with
omp_set_default_allocator(omp_allocator_handle_t allocator)

Using OpenMP allocator traits
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◼ LLVM OpenMP runtime internally already uses libmemkind (libnuma, numactl)

→ Support for various kinds of memory: DDR, HBW and Persistent Memory (Optane)

→ Library loaded at initialization (checks for availability)

→ If requested memory space for allocator is not available → fallback to DDR

◼ Memory Management implementation in LLVM still not complete

→ Some allocator traits not implemented yet

→ Some partition values not implemented yet (environment, interleaved, nearest, blocked)

→ Semantics of omp_high_bw_mem_space and omp_large_cap_mem_space unclear. Which memory 

should be used?

→Explicitly target HBM → currently implemented in LLVM

◼ LLVM has custom implementation of aligned memory allocation

→ Allocation covers → {Allocator Information + Requested Size + Buffer based on alignment}

Memory Management Status (status: 11/2024)



Vectorization/SIMD

Michael Klemm
1

Loop Transformations
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◼ Loop unrolling is a standard tuning practice to reduce loop overhead 

and increase potential for pipeline.

Loop Unrolling

subroutine loop()

do i = 1, 4

call body(i)

end do

end subroutine loop

subroutine loop()

call body(i + 0)

call body(i + 1)

call body(i + 2)

call body(i + 3)

end subroutine loop

subroutine loop()

!$omp unroll full

do i = 1, 4

call body(i)

end do

end subroutine loop

◼ “full” completely unrolls the loop

→Needs a compile-time constant upper 

bound.

→Loop is no longer present after unrolling 

took place.
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◼ Loop unrolling is a standard tuning practice to reduce loop overhead 

and increase potential for pipeline.

Loop Unrolling

subroutine loop()

do i = 1, n

call body(i)

end do

end subroutine loop

subroutine loop()

do i = 1, n, 4

call body(i + 0)

call body(i + 1)

call body(i + 2)

call body(i + 3)

end do

end subroutine loop

subroutine loop()

!$omp unroll partial(4)

do i = 1, n

call body(i)

end do

end subroutine loop

◼ “partial(f)” unrolls the loop with 

unroll factor f

→Upper bound can now be a runtime value

→Compiler will introduce remainder loops 

as necessary
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◼ Tiling is a useful to optimize a loop nest for the cache hierarchy and 

exploiting temporal/spatial locality

Tiling

subroutine loop()

!$omp tile sizes(2,2)

do i = 1, n

do j = 1, m

call body(j, i)

end do

end do

end subroutine loop

subroutine loop()

do ii = 1, n, 2

do jj = 1, m, 2

do i = ii, ii + 2

do j = jj, jj + 2

call body(j, i)

end do

end do

end do

end do

end subroutine loop

Handling of partial tiles 
needed!

i

j
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◼ Tiling is a useful to optimize a loop nest for the cache hierarchy and 

exploiting temporal/spatial locality

Tiling

subroutine loop()

!$omp tile sizes(2,2)

do i = 1, n

do j = 1, m

call body(j, i)

end do

end do

end subroutine loop

subroutine loop()

do ii = 1, n, 2

do jj = 1, m, 2

do i = ii, ii + 2

do j = jj, jj + 2

call body(j, i)

end do

end do

end do

end do

end subroutine loop

Handling of partial tiles 
needed!
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◼ Tiling is a useful to optimize a loop nest for the cache hierarchy and 

exploiting temporal/spatial locality

Tiling

subroutine loop()

!$omp tile sizes(2,2)

do i = 1, n

do j = 1, m

call body(j, i)

end do

end do

end subroutine loop i

j
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!$omp tile sizes(3,3)

do i = 1, n

do j = 1, m

call body(j, i)

end do

end do

◼One can think of tiling as “multi-dimensional” chunking:

Tiling and Chunking

i

j

i

j

!$omp for schedule(static, 3) &

collapse(2)

do i = 1, n

do j = 1, m

call body(j, i)

end do

end do
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◼ Loop Interchange

◼ Loop Reversal

Other Loop Transformations /1

!$omp interchange permutation(3,1,2)

do i = 1, n

do j = 1, m

do k = 1, l

call body(j, i, k)

end do

end do

end do

do k = 1, l

do i = 1, n

do j = 1, m

call body(j, i, k)

end do

end do

end do

!$omp reverse

do i = 1, n

call body(i)

end do

do i = 1, n

call body(n – (i – 1))

end do
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◼ Loop Fusion

◼ Loop Reversal

Other Loop Transformations /2

!$omp fuse

do i = 1, n

call body1(i)

end do

do i = 1, n

call body2)(i)

end do

!$omp end fuse

do i = 1, n

call body1(i)

call body2(i)

end do

!$omp reverse

do i = 1, n

call body(i)

end do

do i = 1, n

call body(n – (i – 1))

end do
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◼ Loop Index Splitting

◼ All these transformations can be useful:

→Fusion: reduce loop overhead and get more work per loop iteration

→Reversal: create forward memory references

→Index splitting: peel off loop iterations, e.g., for better SIMD/memory alignment

Other Loop Transformations /3

!$omp split counts(k, omp_fill)

do i = 1, n

call body(i)

end do

do i = 1, k

call body(i)

end do

do i = k, n

call body(i)

end do
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◼ Loop transformations can be composed, e.g., tiling and unrolling:

Composing Loop Transformations

!$omp tile sizes(2,2) &

apply(intratile:unroll full, & 

unroll full)

do i = 1, n

do j = 1, m

call body(j, i)

end do

end do

do ii = 1, n, 2

do jj = 1, m, 2

i = ii; j = jj

call body(j + 0, i + 0)

call body(j + 1, i + 0)

call body(j + 0, i + 1)

call body(j + 1, i + 1)

end do

end do
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Vectorization
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◼ Exploiting SIMD parallelism with OpenMP

◼ Using SIMD directives with loops

◼ Creating SIMD functions

Topics
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◼Width of SIMD registers has been growing in the past:

SIMD on x86 Architectures

SSE

AVX

AVX-512

128 bit

256 bit

512 bit

2 x DP

4 x SP

4 x DP

8 x SP

8 x DP

16 x SP
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◼ SIMD instructions become more powerful

More Powerful SIMD Units

vadd dest, source1, source2 

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 a6+b6 a5+b5 a4+b4 a3+b3 a2+b2 a1+b1 a0+b0

+

=

source1

source2

dest
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◼ SIMD instructions become more powerful

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

a7*b7
+c7

a6*b6
+c6

a5*b5
+c5

a4 *b4
+c4

a3*b3
+c3

a2*b2
+c2

a1*b1
+c1

a0*b0
+c0

*

=

source1

source2

dest

c7 c6 c5 c4 c3 c2 c1 c0 source3

+

vfma source1, source2, source3
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◼ SIMD instructions become more powerful

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 d6 a5+b5 d4 d3 a2+b2 d1 a0+b0

+

=

source1

source2

dest

1 0 1 0 0 1 0 1 mask

vadd dest{k1}, source2, source3
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◼ SIMD instructions become more powerful

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0 source

a7 a4 a6 a5 a3 a0 a2 a1 “tmp”

a7 a4 a6 a5 a3 a0 a2 a1 dest

swizzle

move

vload dest, source{dacb}



Vectorization/SIMD

Michael Klemm
19

◼ Compilers offer auto-vectorization as an optimization pass

→Usually, part of the general loop optimization passes

→Code analysis detects code properties that inhibit SIMD vectorization

→Heuristics determine if SIMD execution might be beneficial

→If all goes well, the compiler will generate SIMD instructions

◼ Example: clang/LLVM GCC Intel Compiler

→-fvectorize -ftree-vectorize -vec (enabled w/ -O2)

→-Rpass=loop-.\* -ftree-loop-vectorize -qopt-report=vec

→-mprefer-vector-width=<width> -fopt-info-vec-all

Auto-vectorization

?
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◼ Data dependencies 

◼Other potential reasons
→Alignment 

→Function calls in loop block

→Complex control flow / conditional branches 

→Loop not “countable” 
→e.g., upper bound not a runtime constant 

→Mixed data types

→Non-unit stride between elements 

→Loop body too complex (register pressure)

→Vectorization seems inefficient

◼Many more … but less likely to occur

Why Auto-vectorizers Fail
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◼ Suppose two statements S1 and S2

◼ S2 depends on S1, iff S1 must execute before S2

→Control-flow dependence

→Data dependence

→Dependencies can be carried over between loop iterations

◼ Important flavors of data dependencies
FLOW ANTI

s1: a = 40 b = 40

b = 21 s1:a = b + 1

s2: c = a + 2 s2:b = 21

Data Dependencies 
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◼ Dependencies may occur across loop iterations

→Loop-carried dependency

◼ The following code contains such a dependency:

◼ Some iterations of the loop have to 

complete before the next iteration can run

→Simple trick: Can you reverse the loop w/o getting wrong results?

Loop-Carried Dependencies

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) 

{

size_t i;

for (i = 0; i < n; i++) {

a[i] = c1 * a[i + 17] + c2 * b[i];

}

}
Loop-carried dependency for a[i] and 

a[i+17]; distance is 17.
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◼ Can we parallelize or vectorize the loop?

→Parallelization: no

(except for very specific loop schedules) 

→Vectorization: yes

(iff vector length is shorter than any distance of any dependency)

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) {
for (int i = 0; i < n; i++) {

a[i] = c1 * a[i + 17] + c2 * b[i];
}   }

Thread 1 Thread 2
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◼ Support required vendor-specific extensions

→Programming models (e.g., Intel® Cilk Plus)

→Compiler pragmas (e.g., #pragma vector)

→Low-level constructs (e.g., _mm_add_pd())

#pragma omp parallel for

#pragma vector always

#pragma ivdep

for (int i = 0; i < N; i++) {

a[i] = b[i] + ...;

}

In a Time Before OpenMP 4.0

You need to trust 
your compiler to do 

the “right” thing.
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◼ Vectorize a loop nest

→Cut loop into chunks that fit a SIMD vector register

→No parallelization of the loop body

◼ Syntax (C/C++)
#pragma omp simd [clause[[,] clause],…] 

for-loops

◼ Syntax (Fortran)
!$omp simd [clause[[,] clause],…] 

do-loops

[!$omp end simd]

SIMD Loop Construct
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Example

float sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp simd reduction(+:sum)

for (int k=0; k<n; k++)   

sum += a[k] * b[k];

return sum;

}

vectorize
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◼ private(var-list):

Uninitialized vectors for variables in var-list

◼ firstprivate(var-list):

Initialized vectors for variables in var-list

◼ reduction(op:var-list):

Create private variables for var-list and apply reduction operator op at the end of the construct

Data Sharing Clauses

42x: ? ? ? ?

42x: 42 42 42 42

42x:12 5 8 17
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◼ safelen (length)

→Maximum number of iterations that can run concurrently without breaking a 

dependence

→In practice, maximum vector length

◼ linear (list[:linear-step])

→The variable’s value is in relationship with the iteration number

→xi = xorig + i * linear-step

◼ aligned (list[:alignment])

→Specifies that the list items have a given alignment

→Default is alignment for the architecture 

◼ collapse (n)

SIMD Loop Clauses
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◼ Parallelize and vectorize a loop nest

→Distribute a loop’s iteration space across a thread team

→Subdivide loop chunks to fit a SIMD vector register

◼ Syntax (C/C++)
#pragma omp for simd [clause[[,] clause],…] 

for-loops

◼ Syntax (Fortran)
!$omp do simd [clause[[,] clause],…] 

do-loops

[!$omp end do simd [nowait]]

SIMD Worksharing Construct
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Example

float sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp for simd reduction(+:sum)

for (int k=0; k<n; k++)   

sum += a[k] * b[k];

return sum;

}

parallelize

vectorize

Thread 0 Thread 1 Thread 2

Remainder Loop Peel Loop
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◼ You should choose chunk sizes that are multiples of the SIMD length

→ Remainder loops are not triggered

→ Likely better performance

◼ In the above example …

→ and AVX2, the code will only execute the remainder loop!

→ and SSE, the code will have one iteration in the SIMD loop plus one in the remainder loop!

Be Careful What You Wish For…

float sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp for simd reduction(+:sum) \

schedule(static, 5)    

for (int k=0; k<n; k++)   

sum += a[k] * b[k];

return sum;

}
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◼ Chooses chunk sizes that are multiples of the SIMD length

→First and last chunk may be slightly different to fix alignment and to handle 

loops that are not exact multiples of SIMD width

→Remainder loops are not triggered

→Likely better performance

OpenMP 4.5 Simplifies  SIMD Chunks

float sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp for simd reduction(+:sum) \

schedule(simd: static, 5)    

for (int k=0; k<n; k++)   

sum += a[k] * b[k];

return sum;

}
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SIMD Function Vectorization

float min(float a, float b) {

return a < b ? a : b;

}

float distsq(float x, float y) {

return (x - y) * (x - y);

}

void example() {

#pragma omp parallel for simd

for (i=0; i<N; i++) {

d[i] = min(distsq(a[i], b[i]), c[i]);

}   }
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◼ Declare one or more functions to be compiled for calls from a SIMD-

parallel loop

◼ Syntax (C/C++):
#pragma omp declare simd [clause[[,] clause],…]

[#pragma omp declare simd [clause[[,] clause],…]]

[…]

function-definition-or-declaration

◼ Syntax (Fortran):

!$omp declare simd (proc-name-list)

SIMD Function Vectorization
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#pragma omp declare simd

float min(float a, float b) {

return a < b ? a : b;

}

#pragma omp declare simd

float distsq(float x, float y) {

return (x - y) * (x - y);

}

void example() {

#pragma omp parallel for simd

for (i=0; i<N; i++) {

d[i] = min(distsq(a[i], b[i]), c[i]);

}   }

SIMD Function Vectorization

_ZGVZN16vv_min(%zmm0, %zmm1):

vminps %zmm1, %zmm0, %zmm0

ret

_ZGVZN16vv_distsq(%zmm0, %zmm1):

vsubps %zmm0, %zmm1, %zmm2

vmulps %zmm2, %zmm2, %zmm0

ret

vmovups (%r14,%r12,4), %zmm0

vmovups (%r13,%r12,4), %zmm1

call _ZGVZN16vv_distsq

vmovups (%rbx,%r12,4), %zmm1

call _ZGVZN16vv_min
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◼ simdlen (length)

→ generate function to support a given vector length

◼ uniform (argument-list)

→ argument has a constant value between the iterations of a given loop

◼ inbranch

→ function always called from inside an if statement

◼ notinbranch

→ function never called from inside an if statement

◼ linear (argument-list[:linear-step])

◼ aligned (argument-list[:alignment])

SIMD Function Vectorization
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inbranch & notinbranch

#pragma omp declare simd inbranch

float do_stuff(float x) {

/* do something */

return x * 2.0;

}

void example() {

#pragma omp simd

for (int i = 0; i < N; i++)

if (a[i] < 0.0)

b[i] = do_stuff(a[i]);

}

vec8 do_stuff_v(vec8 x, mask m) {

/* do something */

vmulpd x{m}, 2.0, tmp

return tmp;

}

for (int i = 0; i < N; i+=8) {

vcmp_lt &a[i], 0.0, mask

b[i] = do_stuff_v(&a[i], mask);

}
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◼OpenMP device and execution model

◼Offload basics and exploiting parallelism

◼ Asynchronous offloading

◼ Hybrid OpenMP and HIP

◼ Advanced Task Synchronization

◼ Case Study: NWChem TCE CCSD(T)

Topics
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Introduction to
OpenMP Offload Features
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Running Example for this Presentation: saxpy

void saxpy() {
float a, x[SZ], y[SZ];
// left out initialization

    double t = 0.0;
    double tb, te;
    tb = omp_get_wtime();
#pragma omp parallel for firstprivate(a)
    for (int i = 0; i < SZ; i++) {
        y[i] = a * x[i] + y[i];
    }
    te = omp_get_wtime();
    t = te - tb;
    printf("Time of kernel: %lf\n", t);
}

Timing code (not needed, just to have 
a bit more code to show ☺)

Timing code (not needed, just to have 
a bit more code to show ☺)

This is the code we want to execute on a 
target device (i.e., GPU)

Don’t do this at home!
Use a BLAS library for this!
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◼ As of version 4.0 the OpenMP API supports accelerators/coprocessors

◼ Device model:

→One host for “traditional” multi-threading

→Multiple accelerators/coprocessors of the same kind for offloading

Device Model

Accelerators
Host
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◼Offload region and its data environment are bound to the lexical scope 

of the construct

→Data environment is created at the opening curly brace

→Data environment is automatically destroyed at the closing curly brace

→Data transfers (if needed) are done at the curly braces, too:

→Upload data from the host to the target device at the opening curly brace.

→Download data from the target device at the closing curly brace.

OpenMP Execution Model for Devices

Host memory Device mem.

01010101011010
01111010110101
00010101010101
01010101010201
01011010000100
10101010101010
0011001

A:

A:

01010101011010
01111010110101
00010101010101
01010101010201
01011010000100
10101010101010
00110011100110

0xabcd

0xef12

!$omp target         &
!$omp   map(alloc:A) &
!$omp   map(to:A)    &
!$omp   map(from:A)  &

call compute(A)
!$omp end target

11011101011010
11111010110101
00010101010000
11110100110301
01011010111100
10101010101010
1100111

11011101011010
11111010110101
00010101010000
11110100110301
01011010111100
10101010101010
11001101110001
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◼Transfer control and data from the host to the device

◼Syntax (C/C++)
#pragma omp target [clause[[,] clause],…] 
structured-block

◼Syntax (Fortran)
!$omp target [clause[[,] clause],…] 
structured-block
!$omp end target

◼Clauses
device(scalar-integer-expression)         
map([{alloc | to | from | tofrom}:] list)  
if(scalar-expr)

OpenMP for Devices - Constructs
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Example: saxpy

void saxpy() {
float a, x[SZ], y[SZ];

    double t = 0.0;
    double tb, te;
    tb = omp_get_wtime();
#pragma omp target
    for (int i = 0; i < SZ; i++) {
        y[i] = a * x[i] + y[i];
    }
    te = omp_get_wtime();
    t = te - tb;
    printf("Time of kernel: %lf\n", t);
}

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:SZ]
y[0:SZ]

x[0:SZ]
y[0:SZ]

clang -fopenmp --offload-arch=gfx90a ...

All accessed arrays are copied from 
host to device and back

Copying x back is not necessary: it 
was not changed.

The compiler identifies variables that are 
used in the target region.

“map(tofrom:y[0:SZ])”

Presence check: only transfer 
if not yet allocated on the 

device. 
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Example: saxpy

subroutine saxpy(a, x, y, n)
    use iso_fortran_env
    integer :: n, i
    real(kind=real32) :: a
    real(kind=real32), dimension(n) :: x
    real(kind=real32), dimension(n) :: y

!$omp target
    do i=1,n
        y(i) = a * x(i) + y(i)
    end do
!$omp end target
end subroutine

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x(1:n)
y(1:n)

x(1:n)
y(1:n)

All accessed arrays are copied from 
host to device and back

Copying x back is not necessary: it 
was not changed.

The compiler identifies variables that are 
used in the target region.

“map(tofrom:y(1:n))”
Presence check: only transfer 

if not yet allocated on the 
device. 

flang -fopenmp --offload-arch=gfx90a ...
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Example: saxpy

void saxpy() {
    double a, x[SZ], y[SZ];
    double t = 0.0;
    double tb, te;
    tb = omp_get_wtime();
#pragma omp target map(to:x[0:SZ]) \   
                   map(tofrom:y[0:SZ])
    for (int i = 0; i < SZ; i++) {
        y[i] = a * x[i] + y[i];
    }
    te = omp_get_wtime();
    t = te - tb;
    printf("Time of kernel: %lf\n", t);
}

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:SZ]
y[0:SZ]

y[0:SZ]

clang -fopenmp --offload-arch=gfx90a ...
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Example: saxpy

void saxpy(float a, float* x, float* y, 
           int sz) {
    double t = 0.0;
    double tb, te;
    tb = omp_get_wtime();
#pragma omp target map(to:x[0:sz]) \   
                   map(tofrom:y[0:sz])
    for (int i = 0; i < sz; i++) {
        y[i] = a * x[i] + y[i];
    }
    te = omp_get_wtime();
    t = te - tb;
    printf("Time of kernel: %lf\n", t);
}

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:sz]
y[0:sz]

y[0:sz]

The compiler cannot determine the size 
of memory behind the pointer.

Programmers have to help the compiler 
with the size of the data transfer needed.

clang -fopenmp --offload-arch=gfx90a
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Exploiting (Multilevel) Parallelism
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◼ The target construct transfers the control flow to the target device

→Transfer of control is sequential and synchronous

→This is intentional!

◼OpenMP separates offload and parallelism

→Programmers need to explicitly create parallel regions on the target device

→In theory, this can be combined with any OpenMP construct

→In practice, there is only a useful subset of OpenMP features for a target device 

such as a GPU, e.g., no I/O, limited use of base language features.

Creating Parallelism on the Target Device
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Example: saxpy

void saxpy(float a, float* x, float* y, 
           int sz) {
#pragma omp target map(to:x[0:sz]) \   
                   map(tofrom(y[0:sz])
#pragma omp parallel for simd
    for (int i = 0; i < sz; i++) {
        y[i] = a * x[i] + y[i];
    }
}

h
o
s
t

ta
rg
e
t

h
o
s
t

Create a team of threads to execute the loop in 
parallel using SIMD instructions.

GPUs are multi-level devices:
SIMD, threads, thread blocks

clang -fopenmp --offload-arch=gfx90a
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◼ Support multi-level parallel devices

◼ Syntax (C/C++):
#pragma omp teams [clause[[,] clause],…] 
structured-block

◼ Syntax (Fortran):
!$omp teams [clause[[,] clause],…] 
structured-block

◼ Clauses
num_teams(integer-expression), thread_limit(integer-

expression)
default(shared | firstprivate | private none)
private(list), firstprivate(list), shared(list), 

reduction(operator:list)

teams Construct
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◼ Manual code transformation

→Tile the loop into an outer loop and an inner loop.

→Assign the outer loop to “teams”.

→Assign the inner loop to the “threads”.

→ (Assign the inner loop to SIMD units.)

Multi-level Parallel saxpy

void saxpy(float a, float* x, float* y, int sz) {
    int bs = n / omp_get_num_teams();
    for (int i = 0; i < sz; i += bs) {
        y[ii] = a * x[ii] + y[ii];
    }
}

void saxpy(float a, float* x, float* y, int sz) {
     
    {
        int bs = n / omp_get_num_teams();   // n assumed to be multiple of #teams 
         
        for (int i = 0; i < sz; i += bs) {
             
            for (int ii = i; ii < i + bs; ii++) {
                y[ii] = a * x[ii] + y[ii];
}   }   }   }

    #pragma omp target teams map(to:x[0:sz]) map(tofrom:y[0:sz]) num_teams(nteams)

        #pragma omp distribute
            
            #pragma omp parallel for simd firstprivate(i,bs)



OpenMP Offload Programming

Michael Klemm, Christian Terboven
17

◼ For convenience, OpenMP defines composite constructs to implement 

the required code transformations

Multi-level Parallel saxpy

void saxpy(float a, float* x, float* y, int sz) {
    #pragma omp target teams distribute parallel for simd \

num_teams(num_blocks) map(to:x[0:sz]) map(tofrom:y[0:sz])
    for (int i = 0; i < sz; i++) {
        y[i] = a * x[i] + y[i];
    }   
}

subroutine saxpy(a, x, y, n)
    ! Declarations omitted
!$omp omp target teams distribute parallel do simd &
!$omp& num_teams(num_blocks) map(to:x) map(tofrom:y)
    do i=1,n
        y(i) = a * x(i) + y(i)
    end do
!$omp end target teams distribute parallel do simd
end subroutine
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Optimizing Data Transfers
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◼ Connections between host and accelerator are 

typically lower-bandwidth, higher-latency interconnects

→Bandwidth host memory: hundreds of GB/sec

→Bandwidth accelerator memory: TB/sec

→PCIe Gen 4 bandwidth (16x): tens of GB/sec

◼ Unnecessary data transfers must be avoided, by 

→only transferring what is actually needed for the computation, and 

→making the lifetime of the data on the target device as long as possible.

Optimizing Data Transfers is Key to Performance

Accelerators
Host
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◼ If map clauses are not added to target constructs, presence checks 

determine if data is already available in the device data environment:

Role of the Presence Check

subroutine saxpy(a, x, y, n)
    use iso_fortran_env
    integer :: n, i
    real(kind=real32) :: a
    real(kind=real32), dimension(n) :: x
    real(kind=real32), dimension(n) :: y

!$omp target
    do i=1,n
        y(i) = a * x(i) + y(i)
    end do
!$omp end target
end subroutine

“present?(y)” “present?(x)”

– OpenMP maintains a mapping table that 
records what memory pointers have been 
mapped.

– That table also maintains the translation 
between host memory and device 
memory.

– Constructs with no map clause for a data 
item then determine if data has been 
mapped and if not, a map(tofrom:…) is 
added for that data item.
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◼ Reduce the amount of time spent transferring data:

→Use map clauses to enforce direction of data transfer.

→Use target data, target enter data, target exit data constructs to 

keep data environment on the target device.

Optimize Data Transfers

subroutine saxpy(a, x, y, n)
    ! Declarations omitted

!$omp target
    do i=1,n
        y(i) = a * x(i) + y(i)
    end do
!$omp end target
end subroutine

“present?(y)” “present?(x)”

subroutine caller
    ! Declarations omitted

!$omp target data map(to:x) &    
                  map(tofrom:y)
    call saxpy(a, x, y, n) 
!$omp end target
end subroutine
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◼ Reduce the amount of time spent transferring data:

→Use map clauses to enforce direction of data transfer.

→Use target data, target enter data, target exit data constructs to 

keep data environment on the target device.

Optimize Data Transfers

void example() {
float tmp[N], data_in[N], float data_out[N];

#pragma omp target data map(alloc:tmp[:N]) \
map(to:a[:N],b[:N]) \
map(tofrom:c[:N]) 

{
zeros(tmp, N);              
compute_kernel_1(tmp, a, N); // uses target
saxpy(2.0f, tmp, b, N);
compute_kernel_2(tmp, b, N); // uses target
saxpy(2.0f, c, tmp, N);

}   }

void zeros(float* a, int n) {
#pragma omp target teams distribute parallel for

for (int i = 0; i < n; i++)
a[i] = 0.0f;

}

void saxpy(float a, float* y, float* x, int n) {
#pragma omp target teams distribute parallel for

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}
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◼Create scoped data environment and transfer data from the host 
to the device and back

◼Syntax (C/C++)
#pragma omp target data [clause[[,] clause],…] 
structured-block

◼Syntax (Fortran)
!$omp target data [clause[[,] clause],…] 
structured-block
!$omp end target data

◼Clauses
device(scalar-integer-expression)         
map([{alloc | to | from | tofrom | release | delete}:]

list)  
if(scalar-expr)

target data Construct Syntax
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◼ Issue data transfers to or from existing data device environment

◼Syntax (C/C++)
#pragma omp target update [clause[[,] clause],…] 

◼Syntax (Fortran)
!$omp target update [clause[[,] clause],…] 

◼Clauses
device(scalar-integer-expression)
to(list)
from(list)
if(scalar-expr)

target update Construct Syntax
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Example: target data and target update

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)

{

#pragma omp target device(0) 

#pragma omp parallel for

for (i=0; i<N; i++)

tmp[i] = some_computation(input[i], i);

update_input_array_on_the_host(input);

#pragma omp target update device(0) to(input[:N])

#pragma omp target device(0) 

#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)

res += final_computation(input[i], tmp[i], i)

}

h
o
s
t

ta
rg
e
t

h
o
s
t

ta
rg
e
t

h
o
s
t
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Asynchronous Offloading
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◼ OpenMP target constructs are synchronous by default

→The encountering host thread awaits the end of the target region before continuing

→The nowait clause makes the target constructs asynchronous (in OpenMP speak: they 

become an OpenMP task)

Asynchronous Offloads

#pragma omp task
init_data(a);

#pragma omp target map(to:a[:N]) map(from:x[:N])      nowait
compute_1(a, x, N);

#pragma omp target map(to:b[:N]) map(from:y[:N])      nowait
compute_2(b, y, N);

#pragma omp target map(to:x[:N],y[:N]) map(to:z[:N])  nowait
compute_3(z, x, y, N);

#pragma omp taskwait

depend(in:a) depend(out:x)

depend(out:y)

depend(in:x) depend(in:y)

depend(out:a)
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Hybrid Programming
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◼ Hybrid programming here stands for the interaction of OpenMP with a 

lower-level programming model, e.g.

→OpenCL

→CUDA

→HIP

◼OpenMP supports these interactions

→Calling low-level kernels from OpenMP application code

→Calling OpenMP kernels from low-level application code

Hybrid Programming
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Example: Calling saxpy

void example() {

float a = 2.0;

float * x;

float * y;

// allocate the device memory

#pragma omp target data map(to:x[0:count]) map(tofrom:y[0:count])

{

compute_1(n, x);

compute_2(n, y);

saxpy(n, a, x, y)

compute_3(n, y);

}

}

void saxpy(size_t n, float a, 
float * x, float * y) {

#pragma omp target teams distribute \
parallel for simd

for (size_t i = 0; i < n; ++i) {
y[i] = a * x[i] + y[i];

}
}

Let’s assume that we want to 
implement the saxpy() function 

in a low-level language. 
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◼ Assume a HIP version of the SAXPY kernel:

◼We need a way to translate the host pointer that was mapped by 

OpenMP directives and retrieve the associated device pointer.

HIP Kernel for saxpy()

__global__ void saxpy_kernel(size_t n, float a, float * x, float * y) {

size_t i = threadIdx.x + blockIdx.x * blockDim.x;

y[i] = a * x[i] + y[i];

}

void saxpy_hip(size_t n, float a, float * x, float * y) {

assert(n % 256 == 0);

saxpy_kernel<<<n/256,256,0,NULL>>>(n, a, x, y);

}

These are device pointers!
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◼ When creating the device data environment, OpenMP creates a mapping between

→ the (virtual) memory pointer on the host and 

→ the (virtual) memory pointer on the target device.

◼ This mapping is established through the data-mapping directives and their 

clauses.

Pointer Translation /1

Host memory Device mem.

01010101011010
01111010110101
00010101010101
01010101010201
01011010000100
10101010101010
0011001

x:

x:

01010101011010
01111010110101
00010101010101
01010101010201
01011010000100
10101010101010
00110011100110

0xabcd

0xef12

#pragma omp target data \
map(to:x[0:n])

...
!$omp end target data

0xabcd

0xef12

Host pointer

“Mapping table:”

Device pointer

01010101011010
01111010110101
00010101010101
01010101010201
01011010000100
10101010101010
00110011100110

This is what we need for 
the kernel invocation.
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◼ The target data construct defines the use_device_addr clause to 

perform pointer translation.

→The OpenMP implementation searches for the host pointer in its internal 

mapping tables.

→The associated device pointer is then returned.

◼ Note: the pointer variable shadowed within the target data construct 

for the translation.

Pointer Translation /2

type * x = 0xabcd;

#pragma omp target data use_device_addr(x[:0])

{

example_func(x);   // x == 0xef12

}
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Putting it Together…

void example() {

float a = 2.0;

float * x = ...;   // assume: x = 0xabcd

float * y = ...;

// allocate the device memory

#pragma omp target data map(to:x[0:count]) map(tofrom:y[0:count])

{

compute_1(n, x);  // mapping table: x:[0xabcd,0xef12], x = 0xabcd

compute_2(n, y);

#pragma omp target data use_device_addr(x[:0],y[:0])

{

saxpy_hip(n, a, x, y) // mapping table: x:[0xabcd,0xef12], x = 0xef12

}

compute_3(n, y);

}

}
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Advanced Task Synchronization
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◼ Some APIs are based on asynchronous operations

→MPI asynchronous send and receive

→Asynchronous I/O

→HIP, CUDA and OpenCL stream-based offloading

→ In general: any other API/model that executes asynchronously with OpenMP (tasks)

◼ Example: HIP memory transfers

◼ Programmers need a mechanism to marry asynchronous APIs with the parallel 

task model of OpenMP

→How to synchronize completions events with task execution?

Asynchronous API Interaction

do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);
do_something_else();
hipStreamSynchronize(stream);
do_other_important_stuff(dst);
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◼ This solution does not work!

Try 1: Use just OpenMP Tasks

void hip_example() {

#pragma omp task     // task A

{

do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);

}
#pragma omp task // task B
{

do_something_else();
}
#pragma omp task // task C
{

hipStreamSynchronize(stream);
do_other_important_stuff(dst);

}
}

Race condition between the tasks A & C, 
task C may start execution before
task A enqueues memory transfer.
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◼ This solution may work, but 

→ takes a thread away from execution while the system is handling the data transfer.

→may be problematic if called interface is not thread-safe

Try 2: Use just OpenMP Tasks Dependences
void hip_example() {

#pragma omp task depend(out:stream)    // task A

{

do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);

}
#pragma omp task // task B
{

do_something_else();
}
#pragma omp task depend(in:stream) // task C
{

hipStreamSynchronize(stream);
do_other_important_stuff(dst);

}
}

Synchronize execution of tasks through dependence.
May work, but task C will be blocked waiting for 
the data transfer to finish
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◼OpenMP 5.0 introduces the concept of a detachable task

→Task can detach from executing thread without being “completed”

→Regular task synchronization mechanisms can be applied to await completion 

of a detached task

→Runtime API to complete a task

◼ Detached task events: omp_event_handle_t datatype

◼ Detached task clause: detach(event)

◼ Runtime API: 
void omp_fulfill_event(omp_event_handle_t *event)

Detachable
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Detaching Tasks

omp_event_handle_t *event;

void detach_example() {

#pragma omp task detach(event)

{

important_code();

}

#pragma omp taskwait

}




omp_fulfill_event(event); 

Some other thread/task:



1. Task detaches

2. taskwait construct cannot

complete

3. Signal event for completion

4. Task completes and taskwait
can continue
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Putting It All Together

void callback(hipStream_t stream, hipError_t status, void *cb_dat) {
omp_fulfill_event(* (omp_event_handle_t *) cb_data);

}

void hip_example() {

omp_event_handle_t hip_event;

#pragma omp task detach(hip_event) // task A

{

do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);
hipStreamAddCallback(stream, callback, &hip_event, 0);

}
#pragma omp task // task B

do_something_else();

#pragma omp taskwait
#pragma omp task // task C

{
do_other_important_stuff(dst);

}   }







1. Task A detaches
2. taskwait does not continue
3. When memory transfer completes, callback is

invoked to signal the event for task completion
4. taskwait continues, task C executes



OpenMP Offload Programming

Michael Klemm, Christian Terboven
42

Removing the taskwait Construct

void callback(hipStream_t stream, hipError_t status, void *cb_dat) {
omp_fulfill_event(* (omp_event_handle_t *) cb_data);

}

void hip_example() {

omp_event_handle_t hip_event;

#pragma omp task depend(out:dst) detach(hip_event) // task A

{

do_something();
hipMemcpyAsync(dst, src, nbytes, hipMemcpyDeviceToHost, stream);
hipStreamAddCallback(stream, callback, &hip_event, 0);

}
#pragma omp task // task B

do_something_else();

#pragma omp task depend(in:dst)     // task C
{

do_other_important_stuff(dst);
}   }







1. Task A detaches and task C will not execute because
of its unfulfilled dependency on A

2. When memory transfer completes, callback is
invoked to signal the event for task completion

3. Task A completes and C’s dependency is fulfilled
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Case Study: NWChem TCE CCSD(T) 

• TCE: Tensor Contraction Engine
CCSD(T): Coupled-Cluster with Single, Double, 

and perturbative Triple replacements
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◼ Computational chemistry software package

→Quantum chemistry

→Molecular dynamics

◼ Designed for large-scale supercomputers

◼ Developed at the EMSL at PNNL

→EMSL: Environmental Molecular Sciences Laboratory

→PNNL: Pacific Northwest National Lab

◼ URL: http://www.nwchem-sw.org

NWChem
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◼ Requirements for offload candidates

→Compute-intensive code regions (kernels)

→Highly parallel

→Compute scaling stronger than data transfer, 

e.g., compute O(n3) vs. data size O(n2)

Finding Offload Candidates 
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Example Kernel (1 of 27 in total)

• All kernels have the same structure

• 7 perfectly nested loops 

• Some kernels contain inner product loop 
(then, 6 perfectly nested loops)

• Trip count per loop is equal to “tile size” 
(20-30 in production)

• Naïve data allocation (tile size 24)

– Per-array transfer for each target
construct

– triplesx: 1458 MB

– t2sub, v2sub: 2.5 MB each

subroutine sd_t_d1_1(h3d,h2d,h1d,p6d,p5d,p4d,
     1               h7d,triplesx,t2sub,v2sub)
c     Declarations omitted.
      double precision triplesx(h3d*h2d,h1d,p6d,p5d,p4d)
      double precision t2sub(h7d,p4d,p5d,h1d)
      double precision v2sub(h3d*h2d,p6d,h7d)
!$omp target „presence?(triplesx,t2sub,v2sub)"
!$omp teams distribute parallel do private(p4,p5,p6,h2,h3,h1,h7)
      do p4=1,p4d
      do p5=1,p5d
      do p6=1,p6d
      do h1=1,h1d
      do h7=1,h7d
      do h2h3=1,h3d*h2d
       triplesx(h2h3,h1,p6,p5,p4)=triplesx(h2h3,h1,p6,p5,p4)
     1   - t2sub(h7,p4,p5,h1)*v2sub(h2h3,p6,h7)
      end do
      end do
      end do
      end do
      end do
      end do
!$omp end teams distribute parallel do
!$omp end target
      end subroutine

1.5GB data transferred
(host to device)

1.5GB data transferred
(device to host)
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Invoking the Kernels / Data Management

• Simplified pseudo-code • Reduced data 
transfers:

– triplesx:

• allocated once

• always kept on the 
target 

– t2sub, v2sub:

• allocated after comm.

• kept for (multiple) 
kernel invocations

!$omp target enter data map(alloc:triplesx(1:tr_size))

c     for all tiles

do ...

call zero_triplesx(triplesx)

do ...

call comm_and_sort(t2sub, v2sub)

!$omp target data map(to:t2sub(t2_size)) map(to:v2sub(v2_size))

if (...) 

call sd_t_d1_1(h3d,h2d,h1d,p6d,p5d,p4d,h7,triplesx,t2sub,v2sub)

end if

c         same for sd_t_d1_2 until sd_t_d1_9

!$omp target end data

end do

do ...

c         Similar structure for sd_t_d2_1 until sd_t_d2_9, incl. target data

end do

call sum_energy(energy, triplesx)

end do

!$omp target exit data map(release:triplesx(1:size))

Allocate 1.5GB data once, 
stays on device.

Update 2x2.5MB of data for 
(potentially) multiple kernels.
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Invoking the Kernels / Data Management

• Simplified pseudo-code
!$omp target enter data map(alloc:triplesx(1:tr_size))

c     for all tiles

do ...

call zero_triplesx(triplesx)

do ...

call comm_and_sort(t2sub, v2sub)

!$omp target data map(to:t2sub(t2_size)) map(to:v2sub(v2_size))

if (...) 

call sd_t_d1_1(h3d,h2d,h1d,p6d,p5d,p4d,h7,triplesx,t2sub,v2sub)

end if

c         same for sd_t_d1_2 until sd_t_d1_9

!$omp target end data

end do

do ...

c         Similar structure for sd_t_d2_1 until sd_t_d2_9, incl. target data

end do

call sum_energy(energy, triplesx)

end do

!$omp target exit data map(release:triplesx(1:size))

Allocate 1.5GB data once, 
stays on device.

Update 2x2.5MB of data for 
(potentially) multiple kernels.

subroutine sd_t_d1_1(h3d,h2d,h1d,p6d,p5d,p4d,
     1               h7d,triplesx,t2sub,v2sub)
c     Declarations omitted.
      double precision triplesx(h3d*h2d,h1d,p6d,p5d,p4d)
      double precision t2sub(h7d,p4d,p5d,h1d)
      double precision v2sub(h3d*h2d,p6d,h7d)
!$omp target „presence?(triplesx,t2sub,v2sub)"
!$omp teams distribute parallel do private(p4,p5,p6,h2,h3,h1,h7)
      do p4=1,p4d
      do p5=1,p5d
      do p6=1,p6d
      do h1=1,h1d
      do h7=1,h7d
      do h2h3=1,h3d*h2d
       triplesx(h2h3,h1,p6,p5,p4)=triplesx(h2h3,h1,p6,p5,p4)
     1   - t2sub(h7,p4,p5,h1)*v2sub(h2h3,p6,h7)
      end do
      end do
      end do
      end do
      end do
      end do
!$omp end teams distribute parallel do
!$omp end target
      end subroutine

Presence check determines that arrays 
have been allocated in the device data 

environment already.
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Future OpenMP Directions
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◼ Officially released on November 14, 2024

→Reflects three years of work since release of OpenMP 5.2

→Includes 416 enacted issues, covering a wide range of content and complexity

◼ Free-agent threads significantly change execution model, implementations

◼ New concept for task dependences: transparent tasks

→Enables asynchronous target data (also enables other future extensions)

◼ User-defined induction and induction clause expand parallelism support

◼ Many significant device support improvements (e.g., workdistribute)

◼ Several additional (sequential) loop transforming directives

◼ Supported compound constructs are now defined based on a grammar

◼ Significant improvements to usability and correctness of specification

OpenMP 6.0 includes many major new features
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◼ Other major additions to 6.0 include:

→ Support for dependences and affinity of tasks generated by taskloop directives

→A new taskgraph directive that enables optimized task generation 

◼ Task-generating constructs are fundamental to OpenMP offload model

→Most device constructs (e.g., target and target_update directives) already generate them

→Another major change: target_data is now a dependence sequence of three tasks

→Middle task is transparent by default

→ The construct now is also a taskgroup region by default

→Can specify no_wait and no_group to rely only on dependences for ordering 

◼ Other constructs (e.g., parallel and teams) are composed of implicit tasks

→While not adopted for 6.0, expect to add transparent clause to many of them eventually 

→Will enable no_wait to be supported for parallel construct

OpenMP tasking advances have pervasive impact
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◼ Current OpenMP Language Committee Activities

◼OpenMP Organizational Overview

◼ Final Review of OpenMP 5.0, 5.1, 5.2 and 6.0 (included for reference)

Topics
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OpenMP Language Committee Current Activities: 
TR14 and OpenMP 6.1
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◼ Significant progress has already been made

→ 18 issues have been adopted, mostly covering small updates to 6.0 additions

→ Language committee face-to-face meeting week after next will result in many more issues moving forward

◼ Targeting some significant improvements for device support

→ Support for dynamic groupprivate memory (e.g., small, optimized GPU memory pool) (done!)

→ Support for explicit control of pointer attachment (done!)

→ Improved support for implicit declare target in Fortran 

→ Beginning work on “kernel language”, which will provide more low-level device control

◼ Expect continued refinement in many other areas

→ More loop transformations, refinements of other ones

→ Working on mechanism to control OpenMP defaults used for a translation unit

→ Considering additional extensions that build on transparent tasks (e.g., parallel nowait)

→ Many other small changes, particularly related to tasking and tool support, are likely

OpenMP 6.1 will refine and amend OpenMP 6.0
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◼ True support for using multiple devices 

→Device-to-device scoping support for atomic and other memory operations

→Support for bulk launch

→Support to update data on multiple devices (broadcast/multicast, other collectives)

→Support for work distribution across devices

→Considering relaxing restrictions on nested target regions

◼ Support for pipelining, data-flow, other parallelization models

◼ Support for event-based parallelism 

◼ Characterizing loop-based work distribution constructs as transformations

◼ Efficient use of multiple compilation units (i.e., support for efficient IPO)

Things likely to be deferred to beyond 6.1
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OpenMP Organizational Overview
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OpenMP Roadmap

◼OpenMP has a well-defined roadmap:

→5-year cadence for major releases

→One minor release in between

→OpenMP 5.2 was added as a second minor release before OpenMP version 6.0

→(At least) one Technical Report (TR) with feature previews in every year

Public Comment 
Draft (TR15*)

Public Comment 
Draft (TR13)

Public Comment 
Draft (TR10)

Nov’20 Nov’21 Nov’22 Nov’23 Nov’24 Nov’25

OpenMP 5.1 OpenMP 6.1TR11 OpenMP 6.0

* Numbers assigned to TRs may change if additional TRs are released.

TR16*OpenMP 5.2 TR12

Nov’26

TR14*

Nov’27
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Development Process of the Specification

◼Modifications to the OpenMP specification follow a (strict) process:

◼ Release process for specifications:

Proposal
Impl. 

in LaTeX
1st vote 2nd vote Verify

Merge to 
main

Draft Editing
Comment 

Draft
Quality 
Control

Final Draft
ARB 

Approval
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User Outreach & Education

Check out openmp.org/news/events-calendar/
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◼OpenMP continues to grow

→32 members currently

◼ You can contribute to our annual releases

◼ Attend IWOMP, understand and shape research directions

◼OpenMP membership types now include less expensive memberships

→Please let us know if you would be interested

Help Us Shape the Future of OpenMP
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Final Review of OpenMP 5.0, 5.1, 5.2 and 6.0
Included for Reference
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◼ OpenMP 5.0

→Addressed several major open issues for OpenMP 

→Included 293 passed tickets

◼ OpenMP 5.1

→Includes many refinements to 5.0 additions 

→Included 254 passed GitHub issues

◼ OpenMP 5.2

→Mostly address quality of specification issues but also refines 5.0 and 5.1 additions 

→Included 131 passed GitHub issues

Ratified OpenMP 5.0 in November 2018, 
Ratified OpenMP 5.1 in November 2020
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◼ Significant extensions to improve usability

→OpenMP contexts, metadirective and declare variant

→Addition of requires directive, including support for unified shared memory

→Memory allocators and support for deep memory hierarchies

→Descriptive loop construct

→Ability to quiesce OpenMP threads

→Support to print/inspect affinity state

→Release/acquire semantics added to memory model 

→Support for C/C++ array shaping

◼ First (OMPT) and third (OMPD) party tool support

Major new features in OpenMP 5.0
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◼ Some significant extensions to existing functionality

→Verbosity reducing changes such as implicit declare target directives 

→User defined mappers provide deep copy support for map clauses

→Support for reverse offload

→Support for task reductions , including on taskloop construct, task affinity, new 

dependence types, depend objects and detachable tasks

→Allows teams construct outside of target construct (i.e., on host)

→Supports collapse of non-rectangular loops

→Scan extension of reductions

◼ Major advances for base language normative references

→Completed support for Fortran 2003

→Added initial support of Fortran 2008, C11, C++11, C++14 and C++17

Major new features in OpenMP 5.0
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◼ Supports collapse of imperfectly nested loops

◼ Supports != on C/C++ loops

◼ Adds conditional modifier to lastprivate

◼ Support use of any C/C++ lvalue in depend clauses

◼ Permits declare target on C++ classes with virtual members

◼ Clarification of declare target C++ initializations

◼ Adds task modifier on many reduction clauses

◼ Adds depend clause to taskwait construct

OpenMP 5.0 clarifications and enhancements
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◼ Adds full support for C11, C++11, C++14, C++17, C++20 and 

Fortran 2008 and partial support for Fortran 2018

◼ Extends directive syntax to C++ attribute specifiers 

◼ The scope construct supports reductions within parallel regions

→Christian discussed this enhancement in another session

◼ Extends atomic construct to support compare-and-swap, min and max

→Detailed these enhancements in another session

◼ Adds many clauses and clause modifiers including:

→nowait to taskwait construct

→strict modifier to clauses on the taskloop construct

OpenMP 5.1 refines existing functionality
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◼ Support for mapping (translated) function pointers

◼ Device-specific environment variables to control their ICVs

◼ nothing directive supports metadirective clarity and completeness

◼ Several new runtime routines, including more memory allocation flavors

◼ Deprecations include:

→The master affinity policy and master construct

→Cray pointers

→Many enum values, most related to OMPT (first-party tool interface)

OpenMP 5.1 refines existing functionality
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◼ The interop construct

→Improves native device support (e.g., CUDA streams)

→Also supports interoperability with CPU-based libraries (e.g., TBB)

◼ The new dispatch construct, improved declare variant directive

→Enable use of variants with device-specific arguments

→Elision of “unrecognized” code

OpenMP 5.1 adds some significant extensions
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◼ The assume directive

→Supports optimization hints based on invariants

→Supports promise to limit OpenMP usage to (optimizable) subsets

◼ Loop transformation directives: The tile and unroll directives

→Control use of traditional sequential optimizations

→Ensure that they are applied when, where appropriate relative to parallelization

OpenMP 5.1 adds some significant extensions
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◼ Use error directive to interact with the compiler

◼ Compiler displays msg-string as part of implementation-defined message

◼ The at clause determines when the effect of the directive occurs

→ compilation: If encountered during compilation in a declarative context 

(useful along with metadirective) or is reachable at runtime

→ execution: If the code location is encountered during execution (similar to assert())

◼ The severity clause determines compiler action

→ warning: Print message only (default)

→ fatal: Stop compilation or execution

The error directive supports 
user-defined warnings and errors

#pragma omp error [at(compilation|execution)] [severity(fatal|warning)] \

[message(msg-string)]

structured-block
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◼ Use masked construct to limit parallel execution (low cost: no data environ.)

◼ Encountering thread executes if filter clause matches its thread number

◼ Default (i.e., no clause) is equivalent to deprecated master construct

◼ Future (i.e., OpenMP 6.0) enhancements planned

→Define concept of thread groups, a subset of the threads in a team

→Extend masked to filter based on thread groups or booleans (via clause modifier) 

→filter clause added to other constructs, relying on thread group concept

The masked construct supports 
filtering execution per thread

#pragma omp masked [filter(integer-expression)]

structured-block
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◼ Large portions of specification now generated from JSON-based database

→Section headers and directive and clause format

→Cross references, index entries, hyperlinks and many other document details

→Long-term plan will capture sufficient information in database to generate much more, 

including grammar,  quick reference guide, and header and runtime library routine stub files

◼ Improves specification of OpenMP syntax

→Ensuring syntax of directives and clauses is well-specified and consistent

→Ensuring restrictions are consistent and not just implied by syntax

→Deprecating one-off syntax choices, many other inconsistencies (12 new deprecation 

entries)

→Makes C++ attribute syntax a first-class citizen

◼ Many other minor improvements

OpenMP 5.2 improves quality of the specification
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◼ Free-agent threads significantly change execution model, implementations

◼ New concept for task dependences: transparent tasks

→Enables asynchronous target data (also enables other future extensions)

◼ The target_data directive is now a dependence sequence of three task

◼ Support for dependences and affinity of tasks generated by taskloop

◼ The taskgraph directive enables optimized task generation

◼ User-defined induction and induction clause expand parallelism support

◼ Many significant device support improvements (e.g., workdistribute)

◼ Several additional (sequential) loop transforming directives

◼ Supported compound constructs are now defined based on a grammar

◼ Significant improvements to usability and correctness of specification

OpenMP 6.0 includes many major new features
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◼ Simple inductions are similar to reductions, particulary with use of inscan

→Avoids complexity needed to avoid serialization for parallel scan computations

◼ User-defined induction greatly expands expressible loop parallelism

→Can define complex functions to perform computations with dependences

→Can use collector clause to specify closed form function to enable starting at arbitrary 

iterations (typically used for start of chunks but can allow arbitrarily)

Induction: Parallelization despite dependences
xi = x0; 

result = 0.0;

#pragma omp parallel for reduction(+: result) induction(step(x), *: xi)

for (I = 0; I < N; i++) {

result += c[i] * xi;

xi *= x;

}



Advanced OpenMP Tutorial – Future Directions

Bronis R. de Supinski
28

◼ Pre-6.0 need parallel masked directive so multiple threads execute tasks

What is the effect of the following code?
// assume in main with initialization omitted

// assume no OpenMP directives omitted

TS = 4096;

#pragma omp taskloop grainsize(TS)

for (i = 0; i < SIZE; i++) {

A[i] = A[i] * B[i] * s;

}

// assume in main with initialization omitted

// assume no OpenMP directives omitted

TS = 4096;

#pragma omp parallel masked

#pragma omp taskloop grainsize(TS)

for (i = 0; i < SIZE; i++) {

A[i] = A[i] * B[i] * s;

}
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◼ OpenMP 6.0 defines OpenMP threads as members of logical thread pool

→Pool size can be specified by OMP_THREAD_LIMIT environment variable

◼ OpenMP 6.0 also adds the concept of free-agent threads

→Do not need parallel masked directive

→Instead threadset clause can specify that unassigned threads may execute tasks

6.0 evolves execution model significantly
// assume in main with initialization omitted

// assume no OpenMP directives omitted

TS = 4096;

#pragma omp taskloop grainsize(TS) threadset(omp_pool)

for (i = 0; i < SIZE; i++) {

A[i] = A[i] * B[i] * s;

}
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◼ Successive calls to my_func with the same M are ordered correctly in OpenMP 5.2 
and earlier if they are issued in the same task

→Ensures all uses of task construct will not deadlock

→Other synchronization can alleviate constraint by eliminating concurrency of tasks from 

different calls so this solution does not provide the desired result

Task dependences constrain modularity
// assume library must ensure fine-grain dependences are honored

int my_func(double *M, double *v) {

int i, j, k;

for (i = 0; i < N_ROWS; i += ROWS_PER_TASK) {

#pragma omp task depend(inout:M[i*N_COLS])

for (j = 0; j < ROWS_PER_TASK; j++) {

for (k = 0; k < N_COLS; k++) {

M[(i+j)*N_COLS + k] = M[(i+j)*N_COLS + k] * v[k]; } } }

return 0;

}
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◼ The calls to my_func are ordered because of the dependence shown

◼ These tasks are transparent importing and exporting (“omp_impex”) tasks

→Dependences expressed in the calls are now imported and exported

→Deadlock freedom is still guaranteed

Transparency supports rich dependence graphs
// assume my_func as in previous example

double M[N_ROWS*NCOLS], v[NUM_VS][N_COLS];

int i;

// code to initialize M and v omitted for brevity

for (i = 0; i < NUM_VS; i++) {

#pragma omp task depend(inout:i) transparent(omp_impex)

my_func(M, &v[i*N_COLS]);

}
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◼ The parallel directive will accept a new modifier and two “new” clauses

◼ Using strict prescriptiveness requires nthreads to be provided

◼ Clauses, previously available on error directive, effective with strict if 
cannot provide nthreads

→Display msg-string as part of implementation-defined message

→If severity is fatal execution is terminated

→If severity is warning message is displayed but execution continues

◼ Also now allowed to provide a list for nthreads to support nested parallelism

Extended parallel directive to support 
complete user control of number of threads

#pragma omp parallel [num_threads(prescriptiveness: nthreads)] \

[severity(fatal|warning)][message(msg-string)]

structured-block


